
The Electronic Journal of Mathematics and Technology, Volume 15, Number 2, ISSN 1933-2823

Appreciating functional programming:
A beginner’s tutorial to HASKELL illustrated with

applications in numerical methods

Chu Wei Lim
chuwei.lim@aostudies.com.sg

Weng Kin Ho *

wengkin.ho@nie.edu.sg
National Institute of Education

Nanyang Technological University
637616

Singapore

Abstract

This paper introduces functional programming to the numerical methods community with the
aim of popularizing this programming paradigm through a deeper appreciation for function as a
mathematical concept and, at the same time, for its practical benefits. The functional language
HASKELL is chosen amongst several choices because of its lazy evaluation strategy and high-
performance compiler WinGHCi. We demonstrate the elegance and versatility of HASKELL by
coding HASKELL programs to implement well-known numerical methods.

1 Introduction
Functional programming is a style of programming which is an alternative to imperative program-
ming; the latter being more commonly adopted in the programming community. More than just a
stylistic difference, coding in a functional programming requires the programmer to put on a differ-
ent mind-set. For this reason, we often refer to this new mind-set as the functional programming
paradigm. No thinking occurs in vacuum. In line with the aims of the eJMT to focus on “all
technology-based issues in all Mathematical Sciences”, we introduce functional programming (the
technology part) in close relation to numerical methods (the mathematics part). The main purpose of
this paper is to promote functional programming paradigm to mathematicians in this community as

*Corresponding author

The Electronic Journal of Mathematics and Technology, Volume 15, Number 2, ISSN 1933-2823

clear
n = input(’Key in n: ’);
value = 0;
% initialise value to 0
for i = 1:n
value = value + i;

end
fprintf(’Sum is %d. \n’,value);

consecsum :: Int -> Int
consecsum 1 = 1
consecsum n = n + consecsum (n-1)

Figure 1: Programming styles: imperative (left) vs functional (right)

a novel way of thinking about numerical solutions of old problems. As a pleasant side effect, it is
hoped that we have created here sufficient scenarios for tertiary mathematics students to explore and
deepen their learning of mathematics (in the case, numerical methods) via functional programming.
For this reason, our target audience would be mathematicians (and their students) who are familiar
with both elementary numerical methods and at least one (imperative) programming language, such
as MATLAB or C++.

For a quick taste of the paradigmatic difference between imperative and functional programming,
let us consider the task of computing

n∑
i=1

i = 1 + 2 + 3 + · · ·+ n.

Figure 1 shows how the above summation is computed in imperative style (left), and in functional
style (right).

With the imperative approach, a developer writes a code that specifies the steps which the com-
puter must take to complete the task; this often is referred to as algorithmic programming. Because of
the step-by-step specification style, there is a need to track this step-to-step transition using changes
in state. In the imperative program (on the left), the change in state is enacted by an increment in the
counter i. This change in state then results in a corresponding update in the variable value. We say
that the variable value is mutable because the updated value is stored in the same register value
after a state change occurs in i.

The flow control of an imperative-style program is typically initiated by loops (e.g., for-loops for
i = 1:n ... end, and while-loops while (conditional) do ...), conditionals (e.g.,
if ... then ... else), and method calls. Table 1 shows the corresponding updates in
value in each change in state for the input n equals to 4.

In contrast, a functional approach involves writing the program in the form of a set of pure math-
ematical functions to be executed. A pure function (or simply, function) is just an assignment of a
unique output to each given input. A functional programmer focuses on what information is desired
and what transformations are required, and this type of programming can be said to be declarative,
i.e., the programmer declares what the function is to expect as the input and what to return as the
output via some assignment rule. For example, in Figure 1 the program consecsum is of function
type

79

The Electronic Journal of Mathematics and Technology, Volume 15, Number 2, ISSN 1933-2823

i value Remarks
0 0 Initialize i
1 1 Start of for-loop
2 1 + 2
3 1 + 2 + 3
4 1 + 2 + 3 + 4 End of for-loop

Table 1: State changes and updates of value

consecsum :: Int -> Int

which expects to take in an integer (of type Int, naturally) and designed to output an integer.
Crucially, the functional approach does not make use of state changes to perform updates but

instead exploits transformation of expressions to manipulate data. This can be seen as the execution
of rewriting rules in a rewriting system. For instance, when consecsum operates on the input 4, the
functional code (on the right) in Figure 1 instructs the computer to perform the following expression
transformations:

consecsum 4 = 4 + consecsum 3
= 4 + 3 + consecsum 2
= 4 + 3 + 2 + consecsum 1
= 4 + 3 + 2 + 1

The alert reader would have noticed the different roles of the equality symbol “=” in the clauses
“value = value + i” (imperative) and “consecsum n = n + consecsum (n-1)” (func-
tional), where the former stands for an assignment of an updated datum (previous datum added to the
state number i) to the variable value while the latter defines a expression transformation that un-
folds “consecsum n”.

In a nutshell, we see firstly that functional programming uses pure functions that return the same
result if given the same arguments, i.e., pure functions are deterministic. Secondly all variables are
immutable, that is, you cannot change the value of the variables. In other words the state of an object
cannot change after it is created. The only way to effect any changes is to create a new object with a
new value. The immediate benefits of functional programming is that every function is isolated and
cannot impact other parts of the system. The deterministic nature of functions make them stable, con-
sistent and predictable because we do not need to worry about situations in which the same variable
can have different values.

In our ensuring development, we shall use relevant examples to bring out the various advantages
of functional programming as a programming paradigm, and to demonstrate how functional program-
ming helps us reinforce mathematical understanding. For a detailed computer-scientific comparison
of functional and imperative programming paradigms, we refer the reader to the website [8].

The functional language we use here is HASKELL in which syntactic representation of programs
bears strong resemblance to that of a function. More precisely, the code which implements a func-
tional program f that takes in as input element from the data set A and returns an output element in
the data set B always begins with the ‘domain-codomain’ kind of declaration:

80

The Electronic Journal of Mathematics and Technology, Volume 15, Number 2, ISSN 1933-2823

f :: A -> B

Drawing on the reader’s familiarity with functions, we argue that the cognitive overhead for acquiring
a functional programming language such as HASKELL is relatively lighter than an imperative one.

The bulk of this paper splits into two sections. Section 2 gives a quick tutorial on HASKELL, where
many relevant examples will be brought in to illustrate the special features/advantages of functional
programming. Section 3 illustrates how functional programming gives us a new way of thinking about
mathematics by implementing elementary numerical methods in HASKELL. The way this paper is
organized is for the convenience of readers with varying background knowledge. Readers who have
some familiarity with functional programming and are only interested in HASKELL implementation
of numerical methods may skip Section 2 and go directly to Section 3; perhaps referring to parts
of Section 2 if the need arises. In the ensuing development, we often use the term mathematician
(HASKELL) programmer to refer to mathematicians who write HASKELL programs to realize the
mathematical functions they have in mind.

As this paper is meant to be an introductory tutorial, it is far from being comprehensive. For a
detailed introduction to HASKELL, we refer the reader to [3] and [7], and for a discussion which is
focused more on the functional programming paradigm itself, [4]. The website Learn You a Haskell
for Great Good! (http://learnyouahaskell.com/chapters) is also a fun way of picking
up HASKELL. We have also included herein an appendix “Getting started with HASKELL” that gives a
quick guide on how to (1) install GHCi (the Glasgow HASKELL Compiler’s interactive environment),
and (2) edit and compile HASKELL scripts (see A).

2 Functional programming with HASKELL

2.1 What’s HASKELL?
HASKELL1 is a purely functional programming language, and so all computations are realized by
applying (pure) functions on data/expressions to transform them. Every datum/expression can be
assigned a (data) type, and types may be perceived as sets whose inhabitants are data/expressions.

Because of this perception, we want to think of HASKELL as a machine environment for us to
create (or rather, re-create) mathematics from its very foundation. One foundational theory for math-
ematics is Näive Set Theory, where the primitive concept is ‘set’. Roughly speaking, more compli-
cated sets are built from basic sets using set-theoretic axioms. We shall highlight the salient features of
HASKELL by adopting the approach of building a mathematical universe within HASKELL – bottom
up.

2.2 Values, expressions and types
At the lowest level, there are data which are printable, i.e., can be displayed on the screen or printed
out. Printable data are called values, and the types that store these values are called ground types. In
this paper, we only use the following ground types:

1The programming language HASKELL is named after Haskell Brooks Curry (1900–1989), an American mathemati-
cian and logician.

81

http://learnyouahaskell.com/chapters

The Electronic Journal of Mathematics and Technology, Volume 15, Number 2, ISSN 1933-2823

1. Int, the integer type contain the integers . . . ,−2,−1, 0, 1, 2, . . .;

2. Bool, the boolean type contain true and false;

3. Double, the double precision floating point number type.

Well-formed HASKELL programs are those which can be assigned a unique type, and this as-
signment is called a typing assignment, or simply, typing. Some instances of typing for values given
below:

1 :: Int true :: Bool 0.1 :: Double

In each of the above instances, “::” reads as “is of type”. The mathematician programmer may
interpret 1 :: Int as 1 ∈ Z. Of course, expressions in general can be assigned their types once
the constituent terms in these expressions have been assigned their respective types. For instance, if
we have the typing assignment

n :: Int

then the expression n + 1 can be assigned the valid type:

n + 1 :: Int

Another example is the conditional “if ... then ... else ...”. If we assign the
following types to the variables c, t1, t2

c :: Bool t1, t2 :: A

then the expression if c then t1 else t2 can be typed as

if c then t1 else t2 :: A

HASKELL enforces a set of typing rules to check whether expressions are correctly typed. Such a
typing discipline forbids ill-formed programs such as

if 5 then 7 else 8

since it would have required that the datum 5 be typed as Bool but this is impossible because 5
:: Int is the only legitimate type assignment for the integer 5. We shall see later how this typing
discipline guides the mathematician programmer to script his/her mathematical functions as legitimate
HASKELL programs (see Example 10).

2.3 Building types
In Näive Set Theory, one would build more complicated sets from elementary ones using given set-
theoretic axioms. For types, we can also build new types out of basic ground types, and to build more
complex types out of these constructed types. In this paper, we only consider a small fragment of
HASKELL where we work with the data types which are built from the basic ground types using a
finite number of formation rules presented in the Backus-Naur form (BNF, for short) below:

82

The Electronic Journal of Mathematics and Technology, Volume 15, Number 2, ISSN 1933-2823

A := Int | Bool | Double | (A,A) | A -> A | [A]

What the above BNF means is that a data type A is exactly one of these:

1. a ground type (i.e., Int, Bool, Double), or

2. a product type (i.e., (A,A)), or

3. a function type (i.e., A -> A), or

4. a list type (i.e., [A]).

Remark 1 A mathematician programmer may find it hard to wrap his/her head around the BNF-
style of (inductive) type definition because A appears on both sides of the assignment := and also
in multiple occurrences, e.g., A -> A. Do note that BNF is just a notation of the grammar for type
formation and so := is not an equation of any sort. Additionally, in the expression A -> A there is
no obligation for the first instance of type A to be identical to the second instance of type A.

We now explain which values belong to the product, the function and the list types respectively in
the next subsections.

2.3.1 Product type

The type constructor (-,-) takes a pair of data types A and B to form the product type (A,B). This
is HASKELL’s analogue of the set-theoretic Cartesian product, A×B, of two sets A and B.

Example 2 (Product type) Let us take the product type (Int,Bool) which contains as data or-
dered pairs whose first component is of type Int and whose second component of type Bool as an
example. A typical expression of the product type (Int,Bool) is given by the ordered pair:

(2,True) :: (Int,Bool)

Yet another example of a product type is (Int,Int) which contains ordered pairs of integers.

2.3.2 Function type

Central to the functional programming languages is the facility to produce function types. More
precisely, given two data types A and B one forms the function type

A -> B.

The data which live in the function type A -> B are programs that take in an input of type A and
return an output of type B. The function type constructor -> plays the same role in the universe of
types as the function constructor (− −→ −) does in the universe of sets; recall that given two sets A
and B, then the collection of all the functions from A to B, denoted by

(A −→ B)

is also a set by the axioms of Set Theory.

83

The Electronic Journal of Mathematics and Technology, Volume 15, Number 2, ISSN 1933-2823

Example 3 (Function type) For a basic example, consider the first projection map fst that takes a
data pair, (x,y), of type (X,Y) and returns the first component x of type X which is implemented
by the following self-explanatory script:

fst :: (X,Y) -> X
fst (x,y) = x

In the above example, the program fst which is of type (X,Y) -> X expects an input of
product type (X,Y). Functional programming languages such as HASKELL makes use of pattern
matching to check that the input presented to the program fst must possess certain defining charac-
teristic of those data belonging to the product type. Now data belonging to the product type (X,Y)
are of the specific form (x,y) that comprises two components x and y. The program fst pattern
matches any given input to the form (x,y) and outputs the first component. We shall see more
instance of pattern matching when dealing with list types.

It is important to realize that the function type constructor -> is versatile in creating higher-order
functions, as the example below shows.

Example 4 (Higher-order functions) The addition operation addint that takes in two summands
of integers to produce their sum can be implemented using the following code:

addint :: Int -> Int -> Int
addint x y = x + y

Here the higher-order function type Int -> Int -> Int, under the convention of right as-
sociativity, is the same as Int -> (Int -> Int). Indeed given an input of x :: Int the
function addint returns as output a program, i.e., addint x, of function type Int -> Int.
This is because addint x is waiting to accept an integer argument, y::Int, and returns as output
x+y which is of type Int.

Equipped with the above understanding of the syntax addint x y and the typing assignment
involved, the programmer bears in mind that the function addint x is applied to the datum y
instead of the function addint is applied to a pair of data (x,y).

To understand the higher-order function type better, here is another illustration.

Example 5 (Higher-order functions) Consider the evaluation map which takes in as first argument
a function f::Int -> Int, followed by a second argument an integer n :: Int, and evaluates
the function f on n. Then we can implement the evaluation map eval as follows:

eval :: (Int -> Int) -> Int -> Int
eval f n = f n

In the preceding example, we see HASKELL’s facility for creating higher-order functions allows
us to pass functions as arguments of other functions. The following example further emphasizes on
this point.

84

The Electronic Journal of Mathematics and Technology, Volume 15, Number 2, ISSN 1933-2823

Example 6 (Higher-order functions) Consider the composition operator which takes in as first ar-
gument a function f::A -> B, followed by a second argument another function g::B -> C, and
then compose them to give the composite function f;g. Then we may implement the composition
operator comp as follows:

comp :: (A -> B) -> (B -> C) -> (A -> C)
comp f g x = g (f x)

Indeed comp is the HASKELL analogue of the composition operator ◦ in mathematics, namely:

◦ : (A −→ B) −→ ((B −→ C) −→ (A −→ C)) , (◦(f))(g) = g ◦ f.

The practice of passing functions around as arguments of other functions is central and character-
istic of functional programming, and because of this, functions have such a special status in functional
programming that functional programmers often go by the slogan: “treat functions as first-class citi-
zens” [1, p. 51].

2.3.3 List type

So far we have encountered several type constructors which are construed as HASKELL analogues of
set-theoretic constructors that we are familiar in mathematics. The next type constructor in HASKELL

is perhaps more familiar to a computer scientist, rather than a mathematician; it is the list type. Given
a type A we have its list type, [A]. An instance of a datum of type [A] is a list, i.e., a sequence of
elements each of type A. More precisely, an instance of [A] can either be the empty list [] that
contains nothing or a list, (a:as), which has its head (the first term) the datum a::A, followed by
ts tail, i.e., another list as::A (read as a’s).

Because of the innate recursive nature of list types, a program p that manipulates lists typically
reads a finite initial segment of the input list, gives some instructions to output a finite initial segment
(typically, the head) and then pass the tail of the input list to be processed by p; whence the term tail
recursion that describes this kind of programming technique.

Example 7 (List type) The program intl which takes in two lists, e.g., [x0,x1,x2,...] and
[y0,y1,y2,...], and interleaves their elements to produce [x0,y0,x1,y1,x2,y2,...]
can be defined recursively as follows:

intl :: [A] -> [A] -> [A]
intl [] l = l
intl l [] = l
intl (x:xs) (y:ys) = x:y: intl xs ys

Simply put, the program intl takes the heads of the two input lists and interleaves them, and
then repeats the procedure on the tails of the two input lists.

Indeed tail recursion in HASKELL is just another instance of pattern matching mentioned earlier
(i.e., right after Example 3). The program intl expects a list followed by another. Thus it is either
the first list is empty or the second or both are not empty. In third possibility, the input data are

85

The Electronic Journal of Mathematics and Technology, Volume 15, Number 2, ISSN 1933-2823

matched against the structure (x:xs) and (y:ys) so as to produce the output x:y: intl xs
ys.

HASKELL has a peculiarity of calling the first element x of a list (x:xs) its zeroth element –
something a beginner must bear in mind. So, to extract the (n + 1)th element of a list a, we use the
command !! by writing a!!n.

Example 8 Suppose we want to extract the 4th element of the list [1,4,9,16,25], we can do this:

Figure 2: Extracting the 4th element of the list [1,4,9,16,25]

How does the list type help us understand mathematics better? A simple and straightforward an-
swer is that it enables us to code mathematical sequences (e.g., sequences of real numbers, sequences
of closed intervals, sequences of functions, etc.) as data. For instance the data type [Double] con-
tains all real number sequences. We shall see how lists coded in this manner can be used to deal with
concepts like convergence (c.f. Sections 3.1 and 3.2).

2.3.4 Type synonym

Apart from product, function and list constructors, HASKELL has the facility to create type synonyms.
By this, we mean that we can give a new name for a constructed type.

Example 9 (Type synonym) We may name the constructed product type of a pair of Int types as
Pairint by declaring that:

type Pairint = (Int,Int)

Subsequently, one may then use Pairint as a synonym of (Int,Int) within the same envi-
ronment of this type declaration. For instance, we can define the first projection map as follows:

fst :: Pairint -> Int
fst (x,y) = x

3 Implementing numerical methods
It may appear that the computational power of the small fragment of HASKELL (which we described
in the preceding section) is very limited since it merely consists of three ground types (Int, Bool,

86

The Electronic Journal of Mathematics and Technology, Volume 15, Number 2, ISSN 1933-2823

Double) and three type constructors ((-,-), - -> -, [-]). We now demonstrate that despite
its structural leanness this fragment of the language is surprisingly expressive. In particular, we
show that it is possible to perform most of the real-number computations that one encounters in an
introductory course on elementary numerical methods. The reader is encouraged to compare our
functional programs that implement these numerical methods with their imperative counterparts. It
is hoped that through this comparison, readers can decide for themselves the merits of functional
programming as an alternative programming paradigm to imperative programming. Readers who
need to refresh their memory concerning numerical methods may refer to [2] – this book also contains
imperative MATLAB codes for implementing all the numerical methods mentioned herein. Since we
do not want to deal with exact real arithmetic (i.e., real number computation with arbitrary precision)
in this paper, we conveniently use Double for real number data type (double-precision) to implement
our calculations of real numbers. Readers interested in exact real arithmetic may refer to [5].

Closed intervals play an important role in calculus and real analysis. Coding a closed bounded
interval [a, b] as a pair of double-precision floating point numbers, we call up the type synonym
Interval to denote the Cartesian product of Double with itself:

type Interval = (Double,Double)

In calculus and real analysis, the main subject of study are different classes of functions of the
form f : R −→ R, e.g., continuous functions, differentiable functions, and so on. Cognizant that
programs of function type are first-class citizens in functional programming, it makes sense for us to
create a data type to handle real-valued functions of a single real variable. To do so, we set the type
synonym Function to represent the function space from Double to itself, i.e.,

type Function = Double -> Double

Of course, we can also create data types for real-valued functions of two real variables, i.e., func-
tions of the form f : R× R −→ R. We can create the type:

type F2 = (Double,Double) -> Double

However, in view of functions being first-class citizen we would prefer the higher-order construction
via the type synonym Function2 defined by:

type Function2 = Double -> Double -> Double

In general, instead of realizing the function f : R× R→ R, we always realize its associated higher-
order function

f̂ : R −→ (R −→ R), (f̂(x))(y) = f(x, y).

In the literature of functional programming, the act of turning a function f : R × R → R into its
associated higher-order function f̂ : R −→ (R −→ R) is called the currying.

Naming new types, such as Interval, Function and Function2, by using type synonyms
not only makes coding a lot more readable but also gives meaning to the various kinds of mathematical
objects that the programmer is handling. The following example illustrates this point:

87

The Electronic Journal of Mathematics and Technology, Volume 15, Number 2, ISSN 1933-2823

Example 10 Consider a mathematician programmer writing a HASKELL program ptwsum that
outputs the pointwise sum of two functions (each of type Function). Then ptwsum must be of type
Function -> Function -> Function, i.e., it feeds on a function f as its first argument,
followed by another function g as its second argument, before returning the output of the pointwise
sum. The correct typing assignment for the program ptwsum helps the programmer focus on the job
at hand. In this case the scripts for ptwsum are then given by:

ptwsum :: Function -> Function -> Function
ptwsum f g x = f(x) + g(x)

3.1 Point approximation
One of the ways to compute a real number, α, is by producing a sequence of real numbers, {an}∞n=0,
that converges to it. We refer to this computational approach as the point approximation approach.
The important underlying idea here is to code a sequence of (distinct) real numbers as a list of double-
precision floating numbers, [Double]. This is where HASKELL’s facility of list type plays a crucial
role in describing the phenomenon of convergence. More precisely, given a list of Double data

[a0, a1, ..., an, ...]

that represents a convergent sequence {an}∞n=0, we output the first element an if the next element is
sufficiently close to it in a relative sense, i.e.,∣∣∣∣ anan+1

− 1

∣∣∣∣ < ε, (1)

where ε > 0 is the required precision. We call the inequality (1) the relative precision requirement.
The relative precision requirement has the advantage over the absolute precision requirement, i.e.,

|an − an+1| < ε,

especially when the magnitudes of an and an+1 are very small to begin with.
The following program relerr is employed to display the first element of the list that satisfies

the precision requirement eps in the sense of (1):

relerr :: Double -> [Double] -> Double
relerr eps (a:b:xs)
| abs(a/b - 1) < eps = a
| otherwise = relerr eps (b:xs)

There are two useful features of HASKELL employed in the construct of the above program.

1. relerr makes use of tail recursion. Given a relative error of eps, the program relerr
checks whether the first two terms a and b of the input sequence are relatively close within the
given relative error of eps. If this is the case, the program relerr returns the first term a of
the input sequence. However if this is not the case, the program relerr continues to apply
the precision check on the tail of the sequence.

88

The Electronic Journal of Mathematics and Technology, Volume 15, Number 2, ISSN 1933-2823

2. The program relerr uses guarded environment for piecewise definition. The HASKELL

guards are flagged out by the indented vertical bars | (appearing in lines 3 and 4 of the above
program). Note that the syntax otherwise covers the complement of the preceding condi-
tion(s) (i.e., it implicitly refers to abs(a/b - 1) < eps >= a).

Suppose the relative precision requirement (1) is first met for the index n, the program relerr
terminates and returns the element an.

Remark 11 In situations where the approximations are not of a small magnitude, then it it would
have been more accurate to use the absolute precision requirement. This can also be easily imple-
mented in HASKELL as the following program:

abserr :: Double -> [Double] -> Double
abserr eps (a:b:xs)
| abs(a-b) < eps = a
| otherwise = abserr eps (b:xs)

To avoid switching between these two precision requirements, we adhere to the relative precision
requirement throughout this paper.

The above point approximation approach (together with the relative precision requirement) will
be applied to yield a HASKELL implementation of the following elementary numerical methods:

1. Fixed point iteration method (Section 3.1.1);

2. Newton-Raphson’s method (Section 3.1.2);

3. Numerical differentiation (Section 3.1.3);

4. Euler’s method (Section 3.1.4);

5. Runge-Kutta’s method (Section 3.1.5); and

6. Numerical integration (Section 3.1.6).

3.1.1 Fixed point iteration

Let f be a continuous function defined on some closed bounded interval I and x0 ∈ I be given. Then
applying f repeatedly yields the following trajectory of iterates:

x0, f(x0), f
2(x0), . . . , f

n(x0), f
n+1(x0), . . . (2)

There is an inherent self-similarity in the above sequence in that sense that when we apply the function
f to every term of the sequence we have

f(x0), f
2(x0), f

3(x0), . . . , f
n+1(x0), f

n+2(x0), . . . ,

89

The Electronic Journal of Mathematics and Technology, Volume 15, Number 2, ISSN 1933-2823

which in fact is the tail of the original sequence (2). This observation lends itself directly to the
technique of tail recursion in HASKELL, and we thus code the trajectory (2) using the following
program:

iterates :: Double -> Function -> [Double]
iterates a f = a : (iterates (f a) f)

Example 12 Consider the sequence defined recursively by

x0 = 1, and xn+1 = 1 +
1

1 + xn
.

In this case, we see that
xn+1 = f(xn),

where f(x) = 1 +
1

x
, x 6= 0. We program f as follows:

f1 :: Function
f1 x = 1 + 1/x

The following shows the first 10 terms of the sequence (xn) by applying iterates on the seed
1 and f1:

Figure 3: Calculating the first 10 terms of (xn)

Suppose further that the sequence {fn(x0)}∞n=0 converges, i.e., limn→∞ f
n(x0) = α. Then by the

continuity of f and the fact that a convergent sequence and any of its sub-sequence share the same
limit, we have

f(α) = f
(
lim
n→∞

fn(x0)
)
= lim

n→∞
fn+1(x0) = lim

n→∞
fn(x0) = α.

In other words, α is a fixed point of f .

Example 13 A fixed point α of the function f(x) = 1 +
1

x
satisfies the equation

1 +
1

α
= α,

which is equivalent to α2 − α− 1 = 0. Thus, the possible values of α are
1±
√
5

2
.

90

The Electronic Journal of Mathematics and Technology, Volume 15, Number 2, ISSN 1933-2823

Certain natural conditions are sufficient to guarantee that the trajectory of f , starting with the seed
x0, is convergent. One such set of condition is to require f to be a contraction mapping, i.e., there
exists a constant c ∈ [0, 1) such that

∀x, y ∈ I. |f(x)− f(y)| ≤ c|x− y|.

Example 14 For the case of f(x) = 1 +
1

x
defined on the interval I =

[
3

2
, 2

]
, note that

f(I) ⊆ I

and by the decreasing nature of f we have

fn+1(I) ⊆ fn(I)

for all n = 1, 2, · · · . Furthermore, by the Mean Value Theorem one can show that

∀x, y ∈ I. |f(x)− f(y)| ≤ 4

9
|x− y|.

Hence f is a contraction mapping from I to I .

Given sufficient conditions that ensure the convergence of the trajectory of f hold, with seed value
x0, we can implement the fixed point iteration via the following algorithm:

fpi :: Double -> Double -> Function -> Double
fpi eps a f = relerr eps (iterates a f)

The program relerr ensures that when the consecutive terms fn(x0) and fn+1(x0) of the tra-
jectory get relatively close the program fpi returns the term fn(x0).

Example 15 Returning to Example 12, we employ the program fpi to calculate the fixed point

α =
1 +
√
5

2
∈ I =

[
3

2
, 2

]
of f(x) = 1 +

1

x
with a relative error of 0.001 (see Figure 4).

Figure 4: Calculating α with a relative error of 0.001

91

The Electronic Journal of Mathematics and Technology, Volume 15, Number 2, ISSN 1933-2823

3.1.2 Newton-Raphson method

A special instance of fixed point iteration is the famous Newton-Raphson iteration scheme for solving
numerically the equation

f(x) = 0,

where f is a differentiable function. Indeed the iteration scheme, involving the successive construc-
tions of tangents to the curve y = f(x) and their intersections with the x-axis, is given by

xn+1 = g(xn), n = 0, 1, 2, . . . ,

where g(x) = x− f(x)

f ′(x)
. The upshot here is that each differentiable function f yields a new function

g. This observation allows us to exploit the functional feature of HASKELL by creating a higher-order
function that takes f as its input and yields g as its output. This function is realized by the program
newtonit below:

newtonit :: Function -> Function -> Function
newtonit f df x = x - (f x)/(df x)

Note that in the above program the derivative of the given function f is denoted by df (which has
to be supplied independently by the user).

As we mentioned in Section 1, pure functions are isolated and do not interfere with other functions.
This specific aspect of functional programming allows us to re-use codes freely. In this case, we re-use
the fpi program that we have written in Section 3.1.1 to implement the Newton-Raphson’s method
as follows:

newton :: Double -> Double -> Function -> Function -> Double
newton eps a f df = fpi eps a (newtonit f df)

We have been advertising certain beneficial features of functional programming such as (tail)
recursion, passing functions around as arguments, and neater codes by virtue of these features. How-
ever, we have not compared the run-time performance of programs written in a functional language
versus that in an imperative language.

In what follows, we briefly compare the performance of Newton-Raphson’s method implemented
in HASKELL (a functional language) and MATLAB (an imperative language). This comparison is
done in the context of the following concrete computational problem:

Example 16 In his book Flos, Leonardo de Pisa, better known as Fibonacci (1170–1250), was able
to closely approximate the positive solution to the cubic equation

x3 + 2x2 + 10x = 20.

Let us put newton to the test by calculating the root α up to 10−9 as Fibonacci did more than 700
years ago.

92

The Electronic Journal of Mathematics and Technology, Volume 15, Number 2, ISSN 1933-2823

Rearranging the original equation we have

f(x) = 0,

where f(x) := x3 + 2x2 + 10x− 20. The derivative of f is given by

f ′(x) = 3x2 + 4x+ 10.

We now create the HASKELL programs for these two functions which we denote by f2 (for f)
and df2 (for f ′) respectively:

f2 :: Function
f2 x = x**3 + 2*(x**2) + 10*x - 20

df2 :: Function
df2 x = 3*(x**2) + 4*x + 10

Note that the binary operation ** stands for exponentiation of the numbers in Double.
Running the HASKELL program newton with these inputs, with the seed x0 = 0 and a relative

error of 0.000000001, we have:

Figure 5: Calculating α the root of the Fibonacci’s cubic equation using newton.hs

The Newton-Raphson’s method can be implemented in an imperative language such as MATLAB

using the following modified codes taken from [2, p. 52]:

clear; clc;
eps = 1.0e-9;
x = 0;
xnext = x - f(x)/(fd(x));
d = abs(xnext-x);
while (d > eps)

x=xnext;
xnext = x - f(x)/(fd(x));
d = abs(x/xnext - 1);

end
fprintf(’%18.16f’,xnext);

Running the above MATLAB program newton.m on the following functions f.m and fd.m

93

The Electronic Journal of Mathematics and Technology, Volume 15, Number 2, ISSN 1933-2823

%% function f(x)
function y=f(x)
y = xˆ3 + 2*(xˆ2) + 10*x - 20

%% function fd(x)
function y=fd(x)
y = 3*(xˆ2) + 4*x + 10

yields the following output:

Figure 6: Calculating α the root of the Fibonacci’s cubic equation using newton.m

Figure 7 compares the run-time of the two programs, and gives evidence that the run-time of the
HASKELL implementation (functional: 0.000 seconds) is very much faster than that of the MATLAB

implementation (imperative: 0.006 seconds).

Figure 7: Comparison of run-time of HASKELL (left) and MATLAB programs for computing α

3.1.3 Numerical differentiation

We now move on to numerical differentiation. A preliminary estimate of the gradient of the tangent
to the curve y = f(x) at the point x is given by the first order quotient, i.e., the gradient of the secant

94

The Electronic Journal of Mathematics and Technology, Volume 15, Number 2, ISSN 1933-2823

line joining the points (x, f(x)) and (x + h, f(x + h)), i.e., f(x+h)−f(x)
h

, where h is a ‘small enough’
for which f is defined in the interval [x, x+ h]. This is easily calculated by the following program:

secant :: Double -> Function -> Function
secant h f x = (f (x+h) - f x)/h

We can simulate the convergence of h to 0 by successively halving the initial difference of h. In
particular, we make use of the following sequence

h,
1

2
· (h), 1

2
·
(
1

2
h

)
,
1

2
·
(
1

2
·
(
1

2
h

))
, · · ·

that converges to 0. This sequence is embedded in a recursive manner into the program secantseq
to calculate the corresponding secant values of each term of the above sequence:

secantseq :: Double -> Function -> Double -> [Double]
secantseq h f x = (secant h f x) : secantseq (h/2) f x

To calculate the derivative of f at x, we set the initial value of h to be 1 and demand the consecutive
secant values to be relatively close via the program below:

easydiff :: Double -> Function -> Function
easydiff eps f x = relerr eps (secantseq 1 f x)

Example 17 We now apply the easydiff program to find the derivative of f(x) = sin(x) at x = 0.

f3 :: Function
f3 x = sin (x)

We set the error 10−9 and the output is given in Figure 8 below:

Figure 8: Calculating the derivative of sin(x) at x = 0

3.1.4 Euler’s method

Given the differential equation
dy

dx
= f(x, y), y(a) = y0,

the problem is to find an approximation to y when x = b.

95

The Electronic Journal of Mathematics and Technology, Volume 15, Number 2, ISSN 1933-2823

Let n be the number of steps, x0 = a, xn = b, and the step size

h :=
xn − x0

n
.

Then
yk = yk−1 + hf(xk−1, yk−1), k = 0, 1, · · · , n, (3)

Using the recurrence relation, it is intended that y(b) be calculated as yn.
Equation 3 implies that for a given pair (xk−1, yk−1), we can calculate yk using the formula

yk = g(xk−1, yk−1),

where g(x, y) = y + h · f(x, y). This observation translates into the following ynext program:

ynext :: Double -> Double -> Double -> Function2 -> Double
ynext h x y f = y + (h * (f x y))

We may now unwind the recursive formula (3) one step at a time to produce the following se-
quence {y0, y1, y2, · · · } which can be explicitly expressed as:

y0, y1 := g(x0, y0), y2 := g(x0 + h︸ ︷︷ ︸
x1

, y1), y3 := g(x1 + h︸ ︷︷ ︸
x2

, y2), · · · ,

The above sequence is generated by the following recursive function:

eulerseq :: Double -> Double -> Double -> Function2 -> [Double]
eulerseq h x y f = w : (eulerseq h (x+h) w f)

where w = (ynext h x y f)

We then extract the nth term, yn, of the sequence euler a b y0 f using the operation !!
(see Example 8):

euler :: Double -> Double -> Double -> Function2 -> Int -> Double
euler a b y0 f n = (eulerseq h a y0 f)!!n

where h = (b-a)/fromIntegral(n)

Example 18 We will proceed to use Euler’s method to solve the following differential equation

dy

dx
= 2x+ 2y, y(0) = 1

for the value of y(1) choosing n = 10000.

f4 :: Double -> Double -> Double
f4 x y = 2*x + 2*y

Employing the program euler on the inputs a = 0, b = 1, y0 = 1 and n = 10000, we obtain:
Note that the exact value of y(1) is 3

2
(e2 − 1) ≈ 9.58338414839597.

96

The Electronic Journal of Mathematics and Technology, Volume 15, Number 2, ISSN 1933-2823

Figure 9: Calculating the value of y(1) using Euler method

3.1.5 Runge-Kutta 4th Order

The most widely known member of the Runge-Kutta family is generally referred to as “RK4”, the
“classic Runge-Kutta method” or simply as “the Runge-Kutta method”.

Consider the initial value problem specified below:

dy

dx
= f(x, y), y(x0) = y0.

We aim to find a numerical approximation of y at x = b.
As before, let n be the number of steps, x0 = a, xn = b, and the step size h be given by

h :=
xn − x0

n
.

Then define
xk+1 = xk + h,

yk+1 = yk +
1

6
h (k1 + 2k2 + 2k3 + k4) ,

for k = 0, 1, 2, 3, · · · , n, using

k1 = f(xk, yk),

k2 = f

(
xk +

h

2
, yk + h · k1

2

)
,

k3 = f

(
xk +

h

2
, yk + h · k2

2

)
,

k4 = f (xk + h, yk + hk3) .

From its definition, we see that the RK4 method is similar in structure to that of the Euler’s
method.

Let us proceed to code the kj’s (j = 1, 2, 3, 4) first.

97

The Electronic Journal of Mathematics and Technology, Volume 15, Number 2, ISSN 1933-2823

k1 :: Double -> Double -> Function2 -> Double
k1 x y f = f x y

k2 :: Double -> Double -> Double -> Function2 -> Double
k2 h x y f = f (0.5*h+x) (y+0.5*(k1 x y f)*h)

k3 :: Double -> Double -> Double -> Function2 -> Double
k3 h x y f = f (0.5*h+x) (y+0.5*(k2 h x y f)*h)

k4 :: Double -> Double -> Double -> Function2 -> Double
k4 h x y f = f (x+h) (y+(k3 h x y f) *h)

Then we code the weighted-sum of these kj’s, i.e.,

k1 + 2k2 + 2k3 + k4

using the following program:

ksum :: Double -> Double -> Double -> Function2 -> Double
ksum h x y f = (k1 x y f) + 2*(k2 h x y f)

+ 2*(k3 h x y f) + (k4 h x y f)

Finally, we mimic the recursive style of ynext to create the rk4 program below:

rk4 :: Double -> Double -> Double -> Function2 -> Double
rk4 h x y f = y + (1/6)*h*(ksum h x y f)

This is then used to generate the list of yk’s:

rk4seq :: Double -> Double -> Double -> Function2 -> [Double]
rk4seq h x y f = w: rk4seq h (x+h) w f

where w = (rk4 h x y f)

Finally, we extract yn as the nth term of the above list:

rk4meth :: Double -> Double -> Double -> Function2
-> Int -> Double

rk4meth a y0 b f n = (rk4seq h a y0 f)!!n
where h = (b-a)/fromIntegral(n)

Example 19 We now use rk4meth to solve the following differential equation:

dy

dy
= f(x, y),

98

The Electronic Journal of Mathematics and Technology, Volume 15, Number 2, ISSN 1933-2823

Figure 10: Calculating the value of y(1) using RK4 method

where f(x, y) = 3e−x − 0.4y with initial condition x0 = 0 and y0 = 1.
Note that the exact value of y(1) is −5e−1 + 6e−0.4 ≈ 2.18252307035662.

3.1.6 Numerical integration

The (trapezoidal) area under the line segment joining (a, f(a)) and (b, f(b)) provides a first approx-
imation of the definite integral of the continuous function f over the interval [a, b]. This common
numerical method is called the simple trapezoidal rule. For instance, if f(x) = x2 for x ∈ [1, 2], then
the trapezoidal area under the line segment y = 3x − 2 over [1, 2] estimates the value of the definite

integral
∫ 2

1

x2 dx (see Figure 11).

Figure 11: Simple trapezoidal rule for estimating
∫ 2

1

x2 dx

This first estimate, 1
2
(b− a)(f(a) + f(b)), can be calculated using trap:

trap :: Function -> Interval -> Double
trap f (a,b) = (f(a)+f(b))*(b-a)/2

The idea for calculating the definite integral is to see it as the limit of the sum of trapezia obtained

by a certain refinement procedure which we illustrate below. From the first estimation of
∫ b

a

f(x) dx

produced by the simple trapezoidal rule on [a, b], we may then produce the second estimation of the
definite integral by applying the following procedure:

99

The Electronic Journal of Mathematics and Technology, Volume 15, Number 2, ISSN 1933-2823

1. Bisect the interval I := [a, b] into two equal sub-intervals I0 := [a, c] and I1 := [c, b], where
c = a+b

2
.

2. Apply the simple trapezoidal rule to estimate:

(i)
∫ c

a
f(x) dx over the interval I0; and

(ii)
∫ b

c
f(x) dx over the interval I1.

3. Add the two estimates in (2) to obtain the second estimation of
∫ b

a

f(x) dx.

Figure 12: Binary tree of definite integrals yielded from the refinement

We can think of the first application of Step (2) as a branching at Level 1 that yields leaves, i.e.,∫ c

a
f(x) dx arising from the left half interval I0 and

∫ b

c
f(x) dx arising from the right half interval I1

respectively. To yield the third estimate, we apply the above procedure, i.e., Steps (1)–(3), to estimate
each of the aforementioned two definite integrals. This sequential refinement yields the binary tree
below (Figure 12), where the trapezodial rule is applied at each node to estimate the definite integral
located there.

More precisely, there are 22 trapezium each estimating the definite integrals over the 22 definite
integrals at Level 2. In general, the nth estimate is given by the total area of all the 2n trapezia arising
from iteratively applying Step (2) at Level n.

We now turn to the task of finding the total area An of all the 2n trapezia at Level n, whence
forming the sequence {An}∞n=0. The idea here is to imagine a zip is located at each node, and as the
zip moves forward it adds the elements of the two emergent branches up. For this purpose, we devise
a program called zipadd.

zipadd :: [Double] -> [Double] -> [Double]
zipadd (x0:xs) (y0:ys) = (x0 + y0): zipadd xs ys

100

The Electronic Journal of Mathematics and Technology, Volume 15, Number 2, ISSN 1933-2823

The iterative procedure we have illustrated above lends itself to HASKELL’s capability to handle
tail recursion. Thus, the sequence of estimates {An}∞n=0 can be represented by the list produced by
the following program:

integralseq :: Function -> Interval -> [Double]
integralseq f (a,b) = (trap f (a,b)):

zipadd (integralseq f (a,c))
(integralseq f (c,b))
where c = (a+b)/2

Lastly, we rely on the usual technique of picking up the first term of the above sequence which is
relatively close to the next one, up to the given relative precision requirement.

integrate :: Double -> Function -> Interval -> Double
integrate eps f (a,b) = relerr eps (integralseq f (a,b))

Example 20 Let us use the program integrate to calculate
∫ 2

1
x2 dx with a relative error of 10−7.

Figure 13: Calculating the value of
∫ 2

1
x2 dx using the trapezoidal rule

The exact value of
∫ 2

1
x2dx is 7

3
≈ 2.33333333333333.

The enthusiastic reader is invited to program using HASKELL the Simpson’s quadrature. Such
a program can simply replace the trapezoidal program trap in the program integralseq, thus
illustrating the re-usability of codes in HASKELL.

3.2 Interval approximation
Another approach of computing a real number, α, is by computing an decreasing family, C, of closed
intervals {In}∞n=0, i.e.,

I0 ⊇ I1 ⊇ I2 ⊇ I3 ⊇ . . . In ⊇ In+1 ⊇ . . .

such that the lengths of the intervals converge to 0 and α ∈
⋂∞

n=0 In.
The key idea here is to set a precision requirement on the calculation of α based on the length of

the approximating interval. Given a descending family of closed intervals {[an, bn]}∞n=0 coded as

[(a0,b0),(a1,b1),(a2,b2),...]

101

The Electronic Journal of Mathematics and Technology, Volume 15, Number 2, ISSN 1933-2823

select the first interval (an,bn) such that the endpoints are close to each other in the usual relative
sense, i.e., ∣∣∣∣anbn − 1

∣∣∣∣ < ε,

where the positive quantity, ε, is the user-set precision requirement. This can be achieved by the
program below:

relerrint :: Double -> [Interval] -> Double
relerrint eps ((a,b):xs)
| abs(a/b - 1) < eps = a
| otherwise = relerrint eps xs

Remark 21 As noted in Remark 11, one may employ absolute precision requirement if the two end
points are not of small magnitudes. In that case, the following program is suited for this purpose.

abserr :: Double -> [Double] -> Double
abserr eps (a:b:xs)
| abs(a-b) < eps = a
| otherwise = abserr eps (b:xs)

We deal with numerical solution of equations here. For convenience, we assume that f is a
continuous function defined on [a, b] such that f has exactly one real zero, α, in [a, b].

Definition 22 (f -good interval) An interval I = [a, b] is f -good if f experiences a change of sign
over it, i.e., f(a)f(b) ≤ 0.

Figure 14: [a, b] is f -good

We can implement f -goodness of an interval as follows:

good :: Function -> Interval -> Bool
good f (a,b) = ((f a)*(f b) <= 0)

102

The Electronic Journal of Mathematics and Technology, Volume 15, Number 2, ISSN 1933-2823

3.2.1 Bisection method

Consider any descending chain, C, of f -good intervals ordered by reverse inclusion:

[a0, b0] ⊇ [a1, b1] ⊇ [a2, b2] ⊇ . . . [ak, bk] ⊇ [ak+1, bk+1] ⊇ . . . ,

where limk→∞[ak, bk] = 0. By the Heine-Borel theorem,
⋂∞

i=0[ai, bi] = {α}. In other words, {α} is
the supremum of the descending chain (C,⊇).

For each given f -good interval [a, b], its left (respectively, right) half sub-interval is [a, c] (re-
spectively, [c, b]), where c = a+b

2
. The bisection method selects the f -good subinterval of these two

sub-intervals; in the event when both sub-intervals are f -good, then the left one is always selected.

goodhalf :: Function -> Interval -> Interval
goodhalf f (a,b) = let c = (a+b)/2 in

if (good f (a,c)) then (a,c) else (c,b)

Based on the bisection method, we output the desired descending chain of f -good subintervals in
the form of a list of intervals, beginning with the input f -good interval [a0, b0] using the algorithm
below:

bisectseq :: Function -> Interval -> [Interval]
bisectseq f (a,b) = (a,b): bisectseq f (goodhalf f (a,b))

Lastly, we set an error of tolerance eps such that as soon as the relative ratio, a/b of the endpoints
of an approximating interval [a, b] differs from 1 by this set error then the right endpoint of this interval
is displayed.

bisect :: Double -> Function -> Interval -> Double
bisect eps f (a,b) = relerrint eps (bisectseq f (a,b))

Example 23 We revisit Example 16, i.e., solve the Fibonacci’s cubic equation using the bisection
method on the interval [1, 2]. We set the accuracy to a relative error of 10−9.

Figure 15: Applying the bisection method to solve Fibonacci’s cubic equation

3.2.2 Linear interpolation

For each given f -good interval [a, b], the line which interpolates between the points (a, f(a)) and

(b, f(b)) cuts the x-axis to form a better estimate, c, for α, the zero of f , where c =
af(b)− bf(a)
f(b)− f(a)

.

103

The Electronic Journal of Mathematics and Technology, Volume 15, Number 2, ISSN 1933-2823

The HASKELL version of the saying the above is:

linecut :: Function -> Interval -> Double
linecut f (a,b) = (a*f(b)-b*f(a))/(f(b)-f(a))

This ‘cut-point’ c creates the left ‘half’ subinterval (a, c) and right ‘half’ subinterval (c, b). Like
in the bisection method, we can select the f -good ‘half’ subinterval of these two:

linehalf :: Function -> Interval -> Interval
linehalf f (a,b) = let c = linecut f (a,b) in

if (good f (a,c)) then (a,c) else (c,b)

Again, we create a descending family of f -good intervals relying on the linear interpolation
method.

linehalfseq :: Function -> Interval -> [Interval]
linehalfseq f (a,b) = (a,b) : linehalfseq f (linehalf f (a,b))

Setting the precision requirement yields the desired algorithm:

linint :: Double -> Function -> Interval -> Double
linint eps f (a,b) = relerrint eps (linehalfseq f (a,b))

Example 24 We employ the above program linint to (again) solve the Fibonacci’s cubic equation
using the linear interpolation method on the interval [1, 2] with a relative error of 10−9.

Figure 16: Applying the linear interpolation method to solve Fibonacci’s cubic equation

4 Conclusion

4.1 Summarizing what we have so far
This paper is a beginner’s tutorial to functional programming via HASKELL, and results from a rewrit-
ing of an earlier conference-paper version contributed by the second author back in ATCM 2017 ([6]).

In this paper we advertise several attractive features of the functional programming paradigm
(using Haskell as a vehicular language) with the aim of enticing mathematicians in this community

104

The Electronic Journal of Mathematics and Technology, Volume 15, Number 2, ISSN 1933-2823

to adopt functional programming paradigm as a new way of thinking about these numerical solutions
of old problems. A mathematician HASKELL programmer enjoys the following benefits:

1. Mathematical objects as data. HASKELL can handle familiar mathematical objects such as
natural numbers, real numbers, n-tuples, sequences, intervals and functions as data. Indeed
a native environment within HASKELL has been set up in Section 2.3 to think about sets as
data types. Mathematician programmers can now calculate with functions, sequences and in-
tervals by treating them directly as data, i.e., executing transformations on them as HASKELL

expressions of the respective data types.

2. Programs as functions. HASKELL programs can be thought (and handled) as functions which
anticipate inputs and manufacture outputs. The functional programming paradigm is thus a
natural computing paradigm for mathematicians. The functional aspect of HASKELL, together
with the typing discipline enforced by this language, helps mathematician programmers focus
on the salient data types involved at the input and the output respectively.

3. Purity and composability. Complex programs can be built by composing simple pure func-
tions in a sequential manner – just as one would compose two mathematical functions one after
another to produce a more complicated one. All functions are isolated and do not influence
one another. Thus, the mathematician programmer decomposes a complex problem into sim-
pler isolated subtasks to be realized as pure functions, and to piece them together by functional
composition. Additionally, purity of functions encourages the re-usability of codes without
worry that re-used functions will affect the performance of current ones (see Section 3.1.2).

4. Higher-order functions. HASKELL’s ability to perceive and handle functions as data allows
mathematician programmers to pass functions around as inputs of higher-order functions (see
Section 2.3.2). This gives mathematician programmers a convenient platform to handle familiar
higher-order operators, such as the differential operator, the integral operator, the summation
operator, etc.

5. Pattern matching. HASKELL employs pattern matching for the programmer to check an input
data for the characteristic form or structure pertaining to the data type it is suppose to belong.
This allows the mathematician programmer to assign the output according to the form of the
input data (see Examples 3 and 7).

6. Guarded environment. Mathematician programmers can now script piecewise defined func-
tions, i.e., those of the form

f(x) =

{
· · · if · · ·
· · · if · · ·

,

directly using HASKELL guards (see Section 3.1).

7. Recursion. Throughout the paper, we have exploited recursion when dealing with recursively
defined structures; for instance, we write programs using tail recursion for list types (see Sec-
tion 2.3.3). Mathematician programmers find this a welcomed feature because recursion, as
well as induction, is a central theme of mathematics.

105

The Electronic Journal of Mathematics and Technology, Volume 15, Number 2, ISSN 1933-2823

In Section 3, all the above features have been employed in our HASKELL implementation of sev-
eral elementary numerical methods. Compared to their counterparts, programs written in functional
style read directly as mathematical functions – hence more suited to the taste of a mathematician
programmer. In addition, run-time efficiency is not compromised in functional programming (see
Section 3.1.2 for a comparison with an imperative lanuage).

4.2 Looking into the future
The next step for this research is to demonstrate HASKELL’s capability of handling Complex Analysis.
The authors are now working out the algorithms for calculating contour integrals of complex-valued
functions, such as ∫

C[z0;R]

f(z) dz,

where C[z0;R] denotes the circle of center z0 ∈ C and radius R > 0, and f(z) is a complex-valued
function of a single complex variable z. In particular, we hope to employ the famous Cauchy Integral
Formula (and its extension) to create algorithms for numerical differentiation.

Another important calculation in Complex Analysis that needs to be implemented using HASKELL

is that of Taylor (respectively, Laurent) series. The reason for this choice is that series representation
of complex-valued functions is a cornerstone of Complex Analysis, enabling one to understand the
property of holomorphicity.

References
[1] Abelson, H., & Sussman, G. J. Formulating Abtsractions with Higher-Order Procedures. In Struc-

ture and Interpretation of Computer Programs (p. 51), MIT Press, 1984.

[2] Ang, K. C. Numerical Mathematics with MATLAB, Prentice-Hall, 2009.

[3] Bird, B. Introduction to Functional Programming using Haskell, Prentice-Hall Series in Com-
puter Science, Prentice-Hall, 1998.

[4] Bird, B. Thinking Functionally with Haskell, Cambridge University Press, October 2014.

[5] Ho, W. K. Exact Real Calculator for Everyone. In W.-C. Yang , M. Majweski, T. Alwis, and I. K.
Rana, (Eds.) Proceedings of the 18th Asian Technology Conference in Mathematics (pp. 1-15).
Bombay, India: ATCM, December 2013.

[6] Ho, W. K. Appreciating functional programming: A beginner’s tutorial to haskell illustrated with
applications in numerical methods. In W.-C. Yang, D. B., Meade, & Y. Yuan, (Eds.) Proceedings
of the 22nd Asian Technology Conference in Mathematics (pp. 50-64). Taiwan, Zhung Li: ATCM,
December 2017.

[7] Hutton, G. Programming in Haskell, 2nd Edition, Cambridge University Press, 2016.

106

The Electronic Journal of Mathematics and Technology, Volume 15, Number 2, ISSN 1933-2823

[8] Microsoft documentation. Functional programming vs. imperative programming (LINQ to XML).
Retrieved from https://docs.microsoft.com/en-us/dotnet/standard/linq/
functional-vs-imperative-programming.

107

https://docs.microsoft.com/en-us/dotnet/standard/linq/functional-vs-imperative-programming
https://docs.microsoft.com/en-us/dotnet/standard/linq/functional-vs-imperative-programming

The Electronic Journal of Mathematics and Technology, Volume 15, Number 2, ISSN 1933-2823

A Getting started with HASKELL

As a person who hates ploughing through instruction manuals, I find the following steps manageable
for most Microsoft Windows users who wants to dive into HASKELL without much fuss. (Other OS
users can follow the instructions at https://www.haskell.org/platform/.)

1. You need a text editor. While a simple Notepad would do, Notepad++ has many welcomed
features (e.g., color-coding).

2. You need a HASKELL compiler. For this paper, we use GHC (Glasgow Haskell Compiler).
The best way is to download the Haskell Platform. Visit https://www.haskell.org/
platform/. You need to follow the instructions published there to the letter.

3. GHC takes a Haskell script, i.e., a program that has a .hs extension, and compile it.

4. GHC has an interactive mode (called GHCi) which allows you to interactively interact with
scripts. To do this, type ghci at your prompt. Alternatively, you can click on ghci.exe if
you go through Windows. You will land up with this:

GHCi, version 6.8.2: http://www.haskell.org/ghc/ :? for help
Loading package base ... linking ... done.
Prelude>

5. In your text editor, write your HASKELL script such as the following:

myfact:: Int -> Int
myfact 0 = 1
myfact n = n * myfact (n-1)

Save it as baby.hs or something, and in the same folder which ghci was invoked.

6. Once inside GHCi, load baby.hs by typing :l baby. Then you can play with myfact; see
below:

ghci> :l baby
[1 of 1] Compiling Main (baby.hs, interpreted)
Ok, modules loaded: Main.
ghci> myfact 4
24

7. If you like a Windows GUI for GHCi, you can visit https://github.com/haskell/
winghci/wiki/Installation for the manual installation instructions. This is optional.

108

https://www.haskell.org/platform/
https://www.haskell.org/platform/
https://www.haskell.org/platform/
https://github.com/haskell/winghci/wiki/Installation
https://github.com/haskell/winghci/wiki/Installation

	Introduction
	Functional programming with Haskell
	What's Haskell?
	Values, expressions and types
	Building types
	Product type
	Function type
	List type
	Type synonym

	Implementing numerical methods
	Point approximation
	Fixed point iteration
	Newton-Raphson method
	Numerical differentiation
	Euler's method
	Runge-Kutta 4th Order
	Numerical integration

	Interval approximation
	Bisection method
	Linear interpolation

	Conclusion
	Summarizing what we have so far
	Looking into the future

	Getting started with Haskell

