

Title A Haskell implementation of the Lyness-Moler’s numerical differentiation

algorithm
Author(s) Weng Kin Ho and Chu Wei Lim
Source

Electronic Proceedings of the 25th Asian Technology Conference in
Mathematics, 14 – 16 December 2020, Radford, Virginia, USA, and
Thailand, 83-98

Copyright © 2020 Mathematics & Technology, LLC

A Haskell Implementation of the
Lyness-Moler’s Numerical Differentiation

Algorithm

Weng Kin Ho and Chu Wei Lim
wengkin.ho@nie.edu.sg, chuwei.lim@aostudies.com.sg

National Institute of Education
Nanyang Technological University

Singapore

Abstract

This paper describes a computational problem encountered in numerical differentia-
tion. By restricting the problem to a proper subclass of differentiable functions, a nu-
merical solution first proposed by Lyness and Moler is considered and implemented in the
functional programming language Haskell. The accuracy of the calculation of the numer-
ical derivative using the Lyness-Moler’s method crucially lies in our recursive algorithm
for computing contour integrals.

1 Introduction

To obtain the derivative of a (differentiable) function f at a point x = a numerically one can
rely on the definition of the derivative by first principles, i.e.,

f ′(a) := lim
h→0

f(a+ h)− f(a)

h
,

whenever the limit exists, and calculates the quotient
f(a+ h)− f(a)

h
by h gets arbitrarily

close to 0 ([3]). However, the computation of the derivative using this numerical method is
plagued by a problem, which we illustrate using Example 1.

Example 1 Let us consider our familiar exponential function

f(x) = exp(x), x ∈ R.

To model the convergence of h to 0, we set hn = 10−n (n = 1, 2, 3, · · ·), and the gradient sn of
the secant line through the points (a, exp(a)) and (a+ hn, exp(a+ hn)) is given by

sn =
exp(a+ hn)− exp(a)

hn
.

Proceedings of the 25th Asian Technology Conference in Mathematics

83

In this case, we calculate exp′(a) as the following limit:

lim
n→∞

sn = lim
n→∞

exp(a+ hn)− exp(a)

hn
.

An Excel spreadsheet can be designed to record the following quantities:
(i) n, (ii) hn = 10−n, (iii) exp(a+ hn)− exp(a), and (iv) sn.

A sample of such an Excel spreadsheet design is shown in Figure 1, with a = 1.

Figure 1: Excel spreadsheet showing the calculation of sn’s

Because the exponential function is computed using floating-point arithmetic, both the dif-
ference exp(a+ hn)− exp(a) or the quantity hn will eventually become 0 as n tends to infinity,
i.e., when hn gets sufficiently small (e.g., in our program, after sufficiently many ‘halvings’ of
h). In this instance, the quantity exp(a+hn)−exp(a) becomes 0 when n = 15, and thus so does
sn. As a result, the computed values of {sn} do not converge to exp′(1) = exp(1) ≈ 2.71828
This computational problem is quite disturbing as it rears its ugly head even for very simple
functions such as exp(x).

The aforementioned computational problem is not new, and there are several methods
proposed to overcome it. In this paper, we want to zoom into a specific method first introduced
by Lyness and Moler in 1967 ([8]), and later developed and improved upon by others such as [5].
This method makes clever use of the famous Cauchy Integral Formula which every mathematics
major must learn in the tertiary mathematics education (probably in some Complex Analysis
module).

The purpose of this paper is to give a brief explanation of the Lyness-Moler’s method and to
implement this method in the form of an algorithm written in Haskell (a functional language).
By so doing, this paper improves on a certain part of the work done earlier in [6] with regard
to numerical differentiation. Furthermore, the recursive style of writing programs in Haskell
is exploited in the evaluation of a certain contour integral. We thus enjoy a higher accuracy in
numerical calculations, together with an economy of codes.

There are some pre-requisites needed to understand this paper. Firstly, we assume that the
reader knows Haskell or any functional programming language. For a quick introduction to

Proceedings of the 25th Asian Technology Conference in Mathematics

84

Haskell that would help in the understanding of this paper, we point the interested reader
to our recent introductory tutorial [7]. The benefits of using Haskell in connection to math-
ematics (e.g., higher accuracy and economy of codes) are also advertised in that paper; we
have no space to discuss those here. Secondly, the reader requires some knowledge in Complex
Analysis – at least up to the Cauchy Integral Formula, which can be looked up in any standard
Complex Analysis textbook such as [4]. For the convenience of our target audience, we present
in Section 2 a quick summary of the relevant results that already appeared in [7], and also the
theory developed in [8]. In Section 4, we implement the Lyness-Moler’s method in Haskell
as promised. Throughout the paper, we use GHC (Glasgow Haskell Compiler) and the Windows
GUI, WinGHCi, for Haskell. Readers who wish to try out the Haskell programs presented
here will find the quick guide on “Getting started with Haskell” in the Appendix of [7] useful.

2 Preliminaries

In [7], the numerical method for calculating the derivative described in Section 1 was imple-
mented in Haskell. We explain very briefly the functional programming paradigm and syntax
of Haskell as we go through the codes for the program easydiff below.

In Haskell the real numbers (represented in double-precision) are of the Double data
type. The first step is to calculate the gradient of the secant line that passes through the points
(x, f(x)) and (x + h, f(x + h)), where h is intended to be a real number to be made as small
as we wish.

secant :: Double -> Function -> Double -> Double

secant h f x = (f (x+h) - f x)/h

Notice that secant is assigned the higher-order type Double -> Function -> Double ->

Double as it is a function that feeds on a real number h, followed by the function f and lastly

the real number x and then returns the value of
f(x+ h)− f(x)

h
.

To simulate the limiting process of h tending to 0, we exploit the list data type [Double]

of real numbers with the intention of producing terms of a sequence that approximates the
desired limit. In this case, we want to compute the sequence defined by

sn :=
f(x+ 10−n)− f(x)

10−n
.

We may thus define the so-called secant-sequence {sn}∞n=1 recursively:

secantseq :: Double -> Function -> Double -> [Double]

secantseq h f x = (secant h f x) : secantseq (h/10) f x

For a convergent sequence {an}∞n=1, we choose the absolute error precision requirement given
by:

|an+1 − an| < ε,

i.e., for a given error of ε > 0, one continues to calculate the next term an+1 so long as the
above inequality holds. The absolute error can be calculated using the following program:

Proceedings of the 25th Asian Technology Conference in Mathematics

85

abserr :: Double -> [Double] -> Double

abserr eps (a:b:xs)

| abs(a - b) < eps = a

| otherwise = abserr eps (b:xs)

Making use of all these preceding programs, the program easydiff given below calculates
an approximation of f ′(x) at the relative precision of ε > 0:

easydiff :: Double -> Function -> Double -> Double

easydiff eps f x = abserr eps (secantseq 1 f x)

Because the data type Double relies on the floating point representation, it follows that
secantseq suffers from the same problem illustrated in Example 1 (see Figure 2). More pre-
cisely, the 20th iterate of the gradient of the secant line, s20, equals 0.

Figure 2: Same problem encountered in secanteq

We make crucial (and essential) use of the integration program integrate introduced in [7],
which we reproduce here. This program is constructed based on trapezoidal rule.

trap :: Function -> Interval -> Double

trap f (a,b) = (f(a)+f(b))*(b-a)/2

zipadd :: [Double] -> [Double] -> [Double]

zipadd (x0:xs) (y0:ys) = (x0 + y0): zipadd xs ys

integralseq :: Function -> Interval -> [Double]

integralseq f (a,b) = (trap f (a,b)):

zipadd (integralseq f (a,c))

(integralseq f (c,b))

where c = (a+b)/2

integrate :: Double -> Function -> Interval -> Double

integrate eps f (a,b) = abserr eps (integralseq f (a,b))

Let us look at the following example of evaluating a certain definite integral.

Example 2 Evaluate the definite integral∫ 1

0

ecos (2πt) cos (sin (2πt)) dt.

Proceedings of the 25th Asian Technology Conference in Mathematics

86

To evaluate this integral, we write a short functional program fun1 to code the integrand:

fun1 :: Double -> Double

fun1 x = (exp(cos(2*pi*x)))*(cos(sin(2*pi*x)))

Running integrate on fun1 over [0, 1] with an absolute error of 10−10 yields:

Figure 3: Evaluating
∫ 1

0
ecos (2πt) cos (sin (2πt)) dt

Using techniques in complex analysis, it can be shown that∫ 1

0

ecos (2πt) cos (sin (2πt)) dt = 1.

How does the program integrate work? The idea here is to calculating the definite integral
as the limit of the sum of trapezia obtained by successive refinements which we illustrate below.

From the first estimation of

∫ b

a

f(x) dx produced by the simple trapezoidal rule on [a, b], we

may then produce the second estimation of the definite integral by applying the procedure:

1. Bisect the interval I0 := [a, b] into two equal sub-intervals I10 := [a, c] and I11 := [c, b],
where c = a+b

2
.

2. Apply the simple trapezoidal rule to estimate:

(i)
∫ c
a
f(x) dx over the interval I10; and

(ii)
∫ b
c
f(x) dx over the interval I11.

3. Add the two estimates in (2) to obtain the second estimation of

∫ b

a

f(x) dx.

We can think of the first application of Step (2) as a branching at Level 1 that yields leaves,

i.e.,
∫ c
a
f(x) dx arising from the left half interval and

∫ b
c
f(x) dx arising from the right half

interval respectively. To yield the third estimate, we apply the above procedure, i.e., Steps
(1)–(3), to estimate each of the aforementioned two definite integrals. More precisely, there are
22 trapezium each estimating the definite integrals over the 22 definite integrals at Level 2 (see
Figure 4). In general, the nth estimate is given by the total area of all the 2n trapezia arising
from iteratively applying Step (2) at Level n.

In order to total up the area of these 2n trapezia, the following componentwise-addition of
two lists of real numbers comes in handy:

zipadd :: [Double] -> [Double] -> [Double]

zipadd (x0:xs) (y0:ys) = (x0 + y0): zipadd xs ys

Proceedings of the 25th Asian Technology Conference in Mathematics

87

Figure 4: Branching process in calculating the estimate for the definite integral

The iterative procedure we have illustrated yields a sequence of approximations (making
use of more and more trapezia), and this sequence can be produced by the following program:

integralseq :: Function -> Interval -> [Double]

integralseq f (a,b) = (trap f (a,b)):

zipadd (integralseq f (a,c))

(integralseq f (c,b))

where c = (a+b)/2

Lastly, we rely on the usual technique of picking up the first term of the above sequence
which is relatively close to the next one, up to the given precision requirement.

integrate :: Double -> Function -> Interval -> Double

integrate eps f (a,b) = abserr eps (integralseq f (a,b))

However, there are some integrand functions for which the above precise requirement can
cause a premature termination with a erroneous output.

Example 3 Evaluate the definite integral

∫ 1

0

cos2(2πt) dt.

The exact value of this definite integral is 1
2
. Running the program integralseq on g(t) =

cos2(2πt) over the interval [0, 1] and taking the first 5 terms, the returns are shown in Figure 5.

Figure 5: Sequence of approximations of the definite integral

Observe that the first two terms of the above sequence of approximations to the area under
the graph y = g(x) are equal to 1.0. This happens because of the shape of the graph of the

Proceedings of the 25th Asian Technology Conference in Mathematics

88

function g (see Figure 6), i.e., the end-point values of the function at the boundaries of the first
partition and the second one are equal.

Figure 6: Shape of the graph y = g(x) for 0 ≤ x ≤ 1

As a result, when one runs the program integrate on the above sequence the iteration
stops prematurely causing a substantial error (despite setting ε = 0.0001) in the estimation of
the definite integral (see Figure 7).

Figure 7: Wrong calculation of
∫ 1

0
cos2(2πt) dt

Thus, in practice, the first 5 terms of the sequence of approximations are dropped off to
reduce the risk of an premature program termination due to a constant initial segment of certain
sequences. The modified code is:

integrate :: Double -> Function -> Interval -> Double

integrate eps f (a,b) = abserr eps (drop 5 (integralseq f (a,b)))

Figure 8 shows the result of running the modified integrate program.

Figure 8: Correct calculation of
∫ 1

0
cos2(2πt) dt

For lack of space here, we point our readers to the full exposition of integrate, together
with all the mathematics that supports it, in Section 3.1.6 of [7]. Essential use of integrate
is made in Section 4.2.

Proceedings of the 25th Asian Technology Conference in Mathematics

89

3 Lyness-Moler’s method

The idea behind Lyness-Moler’s method 1 of numerical differentiation is quite nifty. One trans-
forms the task of finding the derivative to that of finding a certain definite integral. Numerical
integration is then applied to evaluate this definite integral. Since numerical integration in-
volves limiting sums, not quotients, the problem described in Section 1 is thus circumvented.
To effect this transformation, one crucially relies on the famous Cauchy Integral Formula (CIF,
for short) which every mathematics major must have learnt in some Complex Analysis course.

Theorem 4 (Cauchy Integral Formula) Let f : C −→ C be a complex-valued function
of one complex variable. Suppose that f is holomorphic on and inside a simple, closed and
positively oriented contour C. Then f is infinitely differentiable. Furthermore, for any a ∈ C
that lies in the interior of the region bounded inside C, it holds that

f (n)(a) =
n!

2πi

∮
C

f(z)

(z − a)n+1
dz.

Notice that there is a price to pay. We have not completely solved the original problem
because the Cauchy Integral formula requires f to be holomorphic. So for the Lyness-Moler’s
method to work, one must extend the real-valued function f(x) of a single real variable to a
holomorphic complex-valued function f(z) of a single complex variable. This in fact is a huge
restriction on the class of functions (the derivative of which we are calculating numerically):
there are functions f that are infinitely differentiable on R which are not even continuous on
C (see Example 5)!

Example 5 Consider the function

g(x) =

{
e−1/x if x > 0;

0 if x ≤ 0.

Note that g(n)(0) = 0 for all n = 0, 1, 2, Thus,

∞∑
n=0

g(n)(0)

n!
xn = 0

for all x ∈ R. Since g(x) 6= 0 on x > 0, it follows that g is not even real-analytic. Notice also
that the complex-valued function of a single complex variable z defined by

f(z) =

{
e1/z if z 6= 0;

0 otherwise,

is not even continuous at z = 0, let alone holomorphic.

1The author independently thought of this method about a decade ago, but only to discover it existed way
back in the 1960s while writing up this paper.

Proceedings of the 25th Asian Technology Conference in Mathematics

90

Although the Lyness-Moler’s method can only be used on a smaller class of differentiable
functions, it suffices for most of our considerations. Besides, our main objective is to implement
this numerical differentiation in Haskell and so we are not too bothered by this restriction.

Let f(x) be a real-valued function of a single real variable x and assume that f(z) is
holomorphic on and inside the circle C. By the Cauchy Integral Formula, for any a ∈ C that
lies in the interior of the region bounded inside C it holds that

an :=
f (n)(a)

n!
=

1

2πi

∮
C

f(z)

(z − a)n+1
dz, n = 0, 1, 2, · · · ,

In particular, for the circle C = C[a; r] := {z ∈ C : |z − a| = r} we can parametrize C as
follows:

z − a = re2πti, 0 ≤ t ≤ 1.

Direct substitution yields:

an =
1

2πi

∮
C[a;r]

f(z)

(z − a)n+1
dz

=
1

2πi

∫ 1

0

f(re2πti + a)

rn+1e2(n+1)πti
· 2πire2πti dt

=
1

rn

∫ 1

0

f(re2πti + a)e−2nπti dt, n = 0, 1, 2, · · · ,

This gives us the formula for an:

an =
1

rn

∫ 1

0

f(re2πti)e−2nπti dt, n = 1, 2, 3 · · · (1)

Since f(z) is holomorphic on and inside the circle C[a; r], so g(z) := (z− a)2nf(z). Because
g(n)(a) = 0, it follows that

0 =
1

2πi

∮
C[a;r]

(z − a)2nf(z)

zn+1
dz.

This simplifies to

0 = rn
∫ 1

0

f(re2πit + a)e2nπti dt.

Since r 6= 0, we would have

1

rn

∫ 1

0

f(re2πti + a)e2nπti dt = 0, n = 1, 2, 3, · · · (2)

By Euler’s theorem, e2nπti = cos(2nπt) + i sin(2nπt), and so adding Equations 1 and 2 we
have:

an =
2

rn

∫ 1

0

f(re2πti + a) cos(2nπt) dt, n = 1, 2, 3, · · · (3)

All in all, we have arrived at the following theorem:

Proceedings of the 25th Asian Technology Conference in Mathematics

91

Theorem 6 Let f(x) be a real-valued function of one real variable x. Suppose that f(z) is
holomorphic on and inside the circle C[a; r] := {z ∈ C : |z − a| = r}. Then

f(a) =

∫ 1

0

f(re2πti + a) dt,

and

f (n)(a) =
2(n!)

rn

∫ 1

0

f(re2πti + a) cos (2nπt) dt, n = 1, 2, 3, · · ·

Furthermore, when a ∈ R, then

f(a) =

∫ 1

0

g(t) dt, (4)

and

f (n)(a) =
2(n!)

rn

∫ 1

0

g(t) cos (2nπt) dt, n = 1, 2, 3, · · · , (5)

where g(t) = Re (f(re2πti + a)).

In the next section, we channel our energy to implement the nth derivative calculator in
Haskell by evaluating numerically those definite integrals in Equation (5) of Theorem 6.

4 Haskell implementation

We organize the implementation of the Lyness-Moler’s method in Haskell into two subsec-
tions. In Subsection , we prepare all the necessary algorithms for elementary calculations in C,
and in Subsection , we develop the Lyness-Moler’s numerical differentiation algorithm.

4.1 Elementary calculations in C
Instead of loading the standard module Complex in Haskell, we choose to build the data type
for complex numbers from scratch because building these data types in Haskell using more
primitive means yield better insight and understanding of complex numbers.

For the rectangular representation of complex numbers z in the form x+ iy or equivalently
the formal pair (x, y), we use the following type synonym:

type Complexr = (Double,Double)

For the polar form of complex numbers z = reiθ or equivalently the formal pair (r, θ), we
use the type declaration:

type Complexp = (Double,Double)

In this paper, we require only to convert the polar form (r, θ) to the rectangular form (x, y)
using the standard equations:

x = r cos θ (6)

y = r sin θ (7)

Proceedings of the 25th Asian Technology Conference in Mathematics

92

The conversion program fromptor is given below:

fromptor :: Complexr -> Complexp

fromptor (r,t) = (r*cos(t),r*sin(t))

The real and imaginary parts are realized as follows:

re :: Complexr -> Double

re (x,y) = x

im :: Complexr -> Double

im (x,y) = y

Setting up the basic arithmetic in the rectangular form is routine.

addr :: Complexr -> Complexr -> Complexr

addr (x1,y1) (x2,y2) = (x1+x2,y1+y2)

minusr :: Complexr -> Complexr -> Complexr

minusr (x1,y1) (x2,y2) = (x1-x2,y1-y2)

multr :: Complexr -> Complexr -> Complexr

multr (x1,y1) (x2,y2) = (x1*x2-y1*y2,x1*y2+y1*x2)

divr :: Complexr -> Complexr -> Complexr

divr (x1,y1) (x2,y2) = ((x1*x2+y1*y2)/(x2**2+y2**2),

(y1*x2-x1*y2)/(x2**2+y2**2))

intpower :: Complexr -> Int -> Complexr

intpower z 0 = (0,1)

intpower z n = multr z (intpower z (n-1))

The four arithmetic operations of addition, subtraction, multiplication and division are
implemented as addr, minusr, multr and divr. Raising a complex number to a non-negative
integral power is realized by intpower.

Taking complex conjugate can also be easily implemented as follows:

conj :: Complexr -> Complexr

conj (x,y) = (x,-y)

Polynomial functions are straightforward to code. Given a list of complex coefficients
a0, a1, · · · , an, the polynomial

P (z) := a0 + a1z + · · ·+ anz
n

can be coded recursively as polynom:

Proceedings of the 25th Asian Technology Conference in Mathematics

93

polynom :: [Complexr] -> (Complexr -> Complexr)

polynom [] z = (0,0)

polynom (x:xs) z = addr x (multr z (polynom xs z))

The famous Möbius transformation

Ma,b,c,d(z) =
az + b

cz + d
,

where a, b, c and d ∈ C are such that ad− bc 6= 0, can also be implemented in Haskell:

mobius :: Complexr -> Complexr -> Complexr -> Complexr

-> (Complexr -> Complexr)

mobius a b c d z = divr (addr (multr a z) b) (addr (multr c z) d)

Three complex transcendental functions, namely,

cos(z) = cos x cosh y − i sinx sinh y,

sin(z) = sinx cosh y + i cosx sinh y,

exp(z) = ex(cos y + i sin y)

need to be in place as well:

cosr :: Complexr -> Complexr

cosr (x,y) = ((cos x)*(cosh y),-(sin x)*(sinh y))

sinr :: Complexr -> Complexr

sinr (x,y) = ((sin x)*(cosh y),(cos x)*(sinh y))

expr :: Complexr -> Complexr

expr (x,y) = ((exp x)*cos(y), (exp x)*(sin y))

4.2 Haskell implementation of Lyness-Moler’s method

Let f(x) be a real-valued function of one real variable x, and suppose that f(z) is holomorphic
on and inside the circle C[a; r] := {z ∈ C : |z − a| = r}. According to Theorem 6, for any real
number a, it holds that

f (n)(a) =
2(n!)

rn

∫ 1

0

g(t) cos (2nπt) dt, n = 1, 2, 3, · · · , (8)

where g(t) = Re (f(re2πti + a)).
The factorial function is easily implemented in Haskell

fact :: Integer -> Integer

fact 0 = 1

fact n = n * fact (n-1)

Proceedings of the 25th Asian Technology Conference in Mathematics

94

We need to build the integrand g(t) cos (2nπt) first. Here is how do it:

build :: (Complexr -> Complexr) -> Integer -> Double -> Double

-> (Double -> Double)

build f n a r = \t -> ((cos (2*pi*fromIntegral(n)*t)) *

re(f(a+r*cos(2*pi*t),r*sin(2*pi*t))))

The reader may wish to note that fromIntegral is an in-built Haskell function that
converts the integer n to a real number of type Double so that the multiplication operation *

is legitimate.
Then we realize Equation (8) as follows:

nderiv :: (Complexr -> Complexr) -> Integer -> Double

-> Double -> Double -> Double

nderiv f n a r eps = k * (integrate eps (build f n a r) (0,1))

where k = (2*fromIntegral(fact n))/(r^n)

5 Sample runs

In this section, we test-run our program nderiv on three real-valued functions of one real
variable (that satisfy the assumptions of Theorem 6):

1. f1(x) = ex;

2. f2(x) = cos (x);

3. f3(x) = sin (x); and

4. f4(x) =
ex

cos3 (x) + sin3 (x)
.

Example 7 We revisit Example 1 that describes the computational issue arising from the nu-
merical differentiation of f1(x) = ex using the usual quotient of differences.

The function f1(x) = ex can be extended to the complex exponential function

exp(z) = exp(x+ iy) := ex(cos (x) + i sin (x)),

which is entire in C. For convenience, we choose the circle C[a, 1] with radius 1, centred at
the real number a = 1. We apply the program nderiv to compute the first, second and third
derivatives of f1(x) = ex at x = a = 1 at the precision of ε = 1× 10−9.

Next we evaluate the first, second and third derivatives of the cosine and sine functions.

Example 8 The function f2(x) = cos (x) can be extended to the complex cosine function

cos(z) = cos(x+ iy) := cos x cosh y − i sinx sinh y,

which is entire in C. For convenience, we choose the circle C[a, 1] with radius 1, centred at
the real number a = 0. We apply the program nderiv to compute the first, second and third
derivatives of f2(x) = cos (x) at x = a = 0 at the precision of ε = 1× 10−9.

Proceedings of the 25th Asian Technology Conference in Mathematics

95

Figure 9: Calculating the 1st, 2nd and 3rd derivatives of f1(x) = ex at x = 1

Figure 10: Calculating the 1st, 2nd and 3rd derivatives of f2(x) = cos (x) at x = 0

Example 9 The function f3(x) = sin (x) can be extended to the complex sine function

sin(z) = sin(x+ iy) := sin x cosh y + i cosx sinh y,

which is entire in C. For convenience, we choose the circle C[a, 1] with radius 1, centred at
the real number a = 0. We apply the program nderiv to compute the first, second and third
derivatives of f3(x) = sin (x) at x = a = 0 at the precision of ε = 1× 10−9.

Figure 11: Calculating the 1st, 2nd and 3rd derivatives of f3(x) = sin (x) at x = 0

Example 10 In the 1967 paper by Lyness and Moler who was the first to introduce their
numerical differentiation method the authors chose the test function

f4(x) =
ex

cos3 (x) + sin3 (x)
,

Proceedings of the 25th Asian Technology Conference in Mathematics

96

which they justified to be “tedious to differentiate analytically, but easy to compute for complex
arguments ([8, p. 207]). Their calculation on [8, p. 209] yields

f (5)(0) = −168.5 · · · ,

whereas the exact value is an integer, i.e.,

f (5)(0) = −164.

Since f4(x) can be extended to the complex function

f4(z) =
ez

cos3 (z) + sin3 (z)
,

which is holomorphic on and inside the circle C[a, 0.5] with radius 0.5 (to avoid the singularity),
centred at the real number a = 0.

We code the function f4 in the form of the program testfn.

testfn :: Complexr -> Complexr

testfn z = divr (expr z) (addr (intpower (sinr z) 3) (intpower (cosr z) 3))

We apply the program nderiv to compute the fifth derivative of f4(x) =
ex

cos3 (x) + sin3 (x)
at x = a = 0 at the precision of ε = 1× 10−9 (Figure 12).

Figure 12: Calculating f
(5)
4 (0)

Notably, our Haskell implementation of the Lyness-Moler’s method produced a more ac-
curate result than the original one presented on [8, p. 208] for their chosen test function.

6 Conclusion

In this paper, we drew wisdom from a 1967 method introduced by Lyness and Moler used
to produce accurate numerical calculations of higher-order derivatives of a certain class of
differentiable functions, i.e., those which can be extended to holomorphic functions on certain
circular regions in the complex plane. The upshot here is that the Lyness-Moler method can be
implemented in the functional language Haskell, and because of the recursive style of writing
programs we enjoy higher accuracy and efficiency with an economy of codes.

Lyness-Moler’s method assumes that the integrand can be extended analytically, and so
the original problem described in Section 1 is solved for a very restricted class of functions. A
paper by Fornberg ([5]) actually removed this assumption, i.e., one need not make use of any
additional properties of the integrand function. Our next step would be to study and implement
the Fornberg’s method of numerical differentiation in Haskell.

Proceedings of the 25th Asian Technology Conference in Mathematics

97

References

[1] Bird, B. Introduction to Functional Programming using Haskell, Prentice-Hall Series in
Computer Science, Prentice-Hall, 1998.

[2] Bird, B. Thinking Functionally with Haskell, Cambridge University Press, October 2014.

[3] Burden, R. L., and Faires, J. D. (2000). Numerical Analysis, (7th Ed), Brooks/Cole. ISBN
0-534-38216-9.

[4] Brown, J. W., and Churchill, R. V. (2014). Complex Variables and Applications, (9th Ed),
McGraw-Hill Education. ISBN 978-0-07-338317-0.

[5] Fornberg, B. (1981). Numerical Differentiation of Analytic Functions, ACM Transactions
on Mathematical Software (TOMS).

[6] Ho, W. K. (2017). Appreciating functional programming: A beginner’s tutorial to
HASKELL illustrated with applications in numerical methods. In Yang, W.-C. Meade,
D. B., & Yuan, Y. (Eds.), Proceedings of the Twenty-second Asian Technology Conference
in Mathematics, 1, 50–64.

[7] Lim, C. W., and Ho, W. K. (2020). Appreciating functional programming: A beginner’s
tutorial to Haskell illustrated with applications in numerical methods. The Electronic
Journal of Mathematics and Technology 14(1). ISSN 1933-2823.

[8] Lyness, J. N., and Moler, C. B. (1967). Numerical differentiation of analytic functions.
SIAM J. Numer. Anal. 4: 202–210. doi:10.1137/0704019.

Proceedings of the 25th Asian Technology Conference in Mathematics

98

	ATCM-2020-83_cover
	ATCM-2020-83_Or
	Introduction
	Preliminaries
	Lyness-Moler's method
	Haskell implementation
	Elementary calculations in C
	Haskell implementation of Lyness-Moler's method

	Sample runs
	Conclusion

