

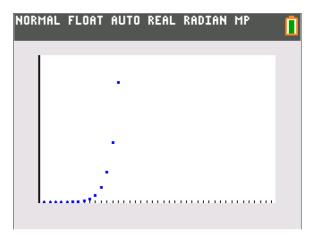
2020 GCE A'Level

H2 Mathematics Paper 2 (9758/02)

Suggested Answers

Qui 1 Griven min (1,-2) quad=5 at x=2 let $y=ax^2+bx+c$ [5] =) $\frac{dy}{dx}\Big _{x=1} = 0$
$\partial x a + b = 0$ when $x = 1$
$\partial atb = 0 - 0$
when $x=2$, $Aatb=5-2$
(2) - (1): $2a = 5$ a = 5/2, $b = -5$
$y = \frac{5}{2}x^2 - 5x + C$ subin (1,-2)
$-2 = \frac{5}{2} - 5 + c$
$C = \frac{1}{2}$ Eq ² : $y = \frac{2}{3}x^{2} - 5x + \frac{1}{2}$

Solutions serve as a suggestion only. All solutions are provided by the teachers from AO Studies. MOE / UCLES bears no responsibility for these suggested answers.


studies where transformation begins

Suggested Answers

Qu 2 Given $U_1 = p$ $U_{n+1} = 2U_n - 5$ $u \neq 0$. (a)(i) p=7[1] $u_1=7$ $u_2=2(7)=5$ = 9 From G.C, the sequence increases exponentially [I] p=5 $U_1 = 5$, $U_2 = 5$ From G.C. the cequence remains et 5.

For	Part	1
1 01	Iuit	-

NORMAL	FLOAT AU	TO REAL RAD:	IAN MP	
Plot1		Plot3		
TYPE:	SEQ(7)	SEQ(7)+1)	SEQ(7)+2)	
nMin	n=1			
∎ ∿u(ກ)∎2u()	n-1)-5		
u(1)	₿7			
u(2)	89			
∎ .v(n	a)=∎			
v(1)	=			
v(2)	=			
∎∿w(n)=			

Solutions serve as a suggestion only. All solutions are provided by the teachers from AO Studies. MOE / UCLES bears no responsibility for these suggested answers.

Suggested Answers

a (ii) Griven $U_{5} = 101$ E_{2} $101 = J U_{4} - 5$ $U_{4} = 53$ $53 = J U_{3} - 5$ $U_{3} = J9$	$ \begin{array}{c} 29 = 242 - 5 \\ 42 = 17 \\ 17 = 241 - 5 \\ 4_1 = 11 = p \end{array} $			
$a_{n} d_{b}(b)(i) V_{1} = a V_{2} = b$ $[3] V_{nt_{2}} = V_{n} + DV_{nt_{1}} - 7 n \neq 0$ Given $V_{4} = DV_{3}$ $\Rightarrow V_{4} = V_{2} + DV_{3} - 7$ $V_{2} = T = b$ $(i) V_{5} = V_{3} + DV_{4} - 7$ $[1] = V_{3} + D(DV_{3}) - 7$ $= 5V_{3} - 7$ $= 5(V_{1} + DV_{2} - 7) - 7$ $= 5(a + D(7) - 7) - 7$ $= 5a + D8$				

Solutions serve as a suggestion only. All solutions are provided by the teachers from AO Studies. MOE / UCLES bears no responsibility for these suggested answers.

Suggested Answers

Qu
$$J c(i)$$
 Given ΞI^{s+}_{s+1} , tevm : $n^{3} - 11n^{2} t^{4}n$
[2] $Sn = n^{3} - 11n^{2} t^{4}n$
 $Sn-i = (n-i)^{3} - 11(n-i)^{2} + 4(n-1)$
 $= (n^{2} - 2nti)(n-i) - 11(n^{2} - 2nti) + 4n - 4t$
 $= n^{3} - n^{2} - 3n^{2} + 3ntin - 1 - 11n^{2} + 22n - 11 + 4n - 4t$
 $= n^{3} - 14n^{2} + 29n - 16$
Th = $Sn - Sn - i = 3n^{2} - 35n + 16$
 $Jc(ii)$ $Sm = m^{3} - 11m^{2} + 4m$
[JJ $S_{3} = 3^{3} - 11(n) + 12 = -60$
 $m^{3} - 11m^{2} + 4m = -60$
From $Gr(c: m = 10, 3, -2)$
 (rej) (rej)

Solutions serve as a suggestion only. All solutions are provided by the teachers from AO Studies. MOE / UCLES bears no responsibility for these suggested answers.

Suggested Answers

3 (i)
(x = 3t²+1 y=6t+1 tyt
Given line N is nowal at (14,11)

$$\frac{dx}{dt} = 6t \qquad dt = 6$$

$$\frac{dy}{dt} = \frac{6}{6t} = \frac{1}{t} \qquad x^{-1}H = 3t^{2}+2$$

$$\frac{1}{t=2} \qquad x^{-1}t=0$$

$$\frac{dy}{dt} |_{x=1H} = \frac{1}{2} \qquad \text{twad of nowal} := 2$$

$$F_{0}^{(1)} \quad y = 1 = -2(X - 14)$$

$$y = -2x + 18 + 11$$

$$y = -3x + 39$$

$$yx + y = 39 \qquad a = 2, b = 1, c = 39$$
3 (ii)
1 2 x + 0 = 35
14 x = 39/2
Aven:
$$\int_{14}^{14} y \ dx + \frac{1}{2} \left(\frac{39}{3} - 14\right)(1)$$

$$= \int_{4}^{2} (6t-1) \ 6t \ dt + \frac{121}{4}$$

$$= \int_{4}^{2} 36t^{2} - 6t \ dt + \frac{121}{4}$$

$$= \left[12t^{3} - 3t^{2}\right]_{16}^{2} + \frac{121}{4}$$

$$= \left(96 - 12\right) - \left(\frac{12}{24} - \frac{3}{36}\right) + \frac{121}{4}$$

$$= \frac{3052}{12} \Rightarrow 114 \text{ units}^{2}$$

Solutions serve as a suggestion only. All solutions are provided by the teachers from AO Studies. MOE / UCLES bears no responsibility for these suggested answers.

Suggested Answers

3(iii) (a) Given J-way stretch,
$$2 \text{ in } x - \text{div}$$

[I]
Reg Avea: $\frac{2054}{18} \times 2 \times 3 = \frac{2054}{3} \text{ units}^2$
(b) $C: x = 3(\frac{941}{6})^2 + 2$
sub $\text{in } x = \frac{1}{3}x$, $9 = \frac{1}{3}9$
 $D: \frac{x}{2} = 3(\frac{93}{4} + 1)^2 + 2$
 $\frac{x}{2} = 3(\frac{9+3}{18})^2 + 2$
 $x = (\frac{9+3}{18})^2 = 4$

Solutions serve as a suggestion only. All solutions are provided by the teachers from AO Studies. MOE / UCLES bears no responsibility for these suggested answers.

Suggested Answers

a 4 (1)2h + a = 30JEa [2] a $-\left(\frac{J^2 a}{2}\right)^2 + h^2 + \left(\frac{a}{2}\right)^2 = H^2$ $-\frac{2a^2}{4}+\frac{a^2}{4}+(30-a)^2=H^2$ $-\frac{1a^2}{4} + \frac{900-60ata^2}{4} = H^2$ =) H² = 25-150 # Chunn Vol: { (a2) (J25-15a) 4 (11) [5] $V^2 = \frac{1}{9}(a^4)(225 - 15a)$ $=\frac{225}{9}a^{4}-\frac{15}{9}a^{5}$ $2V(\frac{dV}{da}) = \frac{900}{9}a^3 - \frac{75}{9}a^4$ For max, $\frac{dv}{da} = 0 = 2$ 900 $a^3 = 75 a^4$ 12 = 0 : 0 = 0 Vmax = = = (144) J45 = 48 J45 = 144 J5 cm³ #

Solutions serve as a suggestion only. All solutions are provided by the teachers from AO Studies. MOE / UCLES bears no responsibility for these suggested answers.

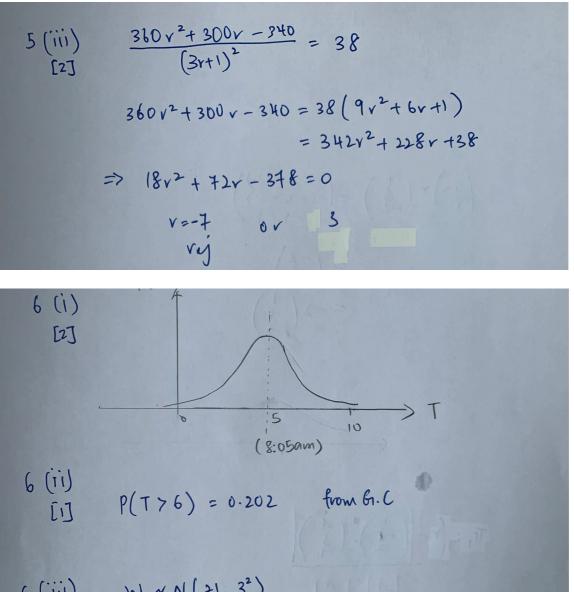
Suggested Answers

4 (iii) (a) Avea :
$$A(\frac{1}{2}ah)$$

 $B = Ja(\frac{20-a}{2})$
 $= 30a - a^{2}$
 $dh = 30 - Ja = 0$
 $a = 15$
Hun $h = \frac{15}{2}$
5 (i) I green , r red , Jr blue vol
 $[3]$ 0 point 5 pts , Jpts .
possible score : Green, fed 0
Green blue 0
ved blue 10
red red 35
blue blue 4
. presible scores are , 0, 4, 10, 25

Solutions serve as a suggestion only. All solutions are provided by the teachers from AO Studies. MOE / UCLES bears no responsibility for these suggested answers.

Suggested Answers



$$\begin{split} & [ef X & duwtes Timels Give \\ & [F] & P(x=o) = \frac{1}{3!r!} x \frac{3r}{3r} \times 2 = \frac{2}{3r+1} \\ & P(x=u) = \frac{2r}{3!r!} \times \frac{3r}{3r} = \frac{2(2u-1)}{3(3r+1)} \\ & P(x=u) = \frac{2r}{3!r!} \times \frac{2r}{3r} \times 2 = \frac{4r}{3(3r+1)} \\ & P(x=u) = \frac{x}{3!r!} \times \frac{2r}{3r} = \frac{r}{3(3r+1)} \\ & P(x=b) = \frac{x}{3!r!} \times \frac{r}{3r} = \frac{r}{3(3r+1)} \\ & \frac{x}{2r} = \frac{0}{3!r!} \times \frac{r}{3r} = \frac{r}{3(3r+1)} \\ & \frac{x}{2(3r+1)} + \frac{40r}{3(3r+1)} + \frac{25(r-1)}{3(3r+1)} = \frac{8[r-33]}{3(3r+1)} \\ & = \frac{27r-1!}{3(3r+1)} = chourn \\ & E(x) = \frac{8(2r-1)}{3(3r+1)} + \frac{400r}{3(3r+1)} + \frac{25(r-1)}{3(3r+1)} = \frac{1084r - 453}{3(3r+1)} \\ & = \frac{27r-1!}{3(3r+1)} = chourn \\ & E(x^2) = \frac{32(2r-1) + 400r + 625(r-1)}{3(3r+1)} = \frac{1084r - 653}{3(3r+1)} \\ & = \frac{1089r - 653}{3(3r+1)} - (\frac{27r-11}{3r+1})^2 \\ & = \frac{(3r+1)(1089r - 653)}{3(3r+1)^2} - (\frac{124r-11}{3r+1})^2 \\ & = \frac{(3r+1)(1089r - 653)}{3(3r+1)^2} - (\frac{124r-11}{3(3r+1)})^2 \\ & = \frac{32b^27r^2 - 197r + 1029r - 653 - 2187r^2 + 1782r - 363}{3(3r+1)^2} \\ & = \frac{1080r^2 + 400r - 1020}{3(3r+1)^2} = \frac{300r^2 + 300r - 340}{(3r+1)^2} \\ \end{array}$$

Solutions serve as a suggestion only. All solutions are provided by the teachers from AO Studies. MOE / UCLES bears no responsibility for these suggested answers.

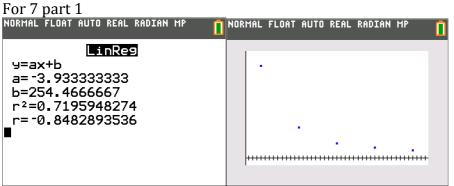
Suggested Answers

 $6(111) \qquad W \sim N(21, 3^{2})$ $[2] (T+W) \sim N(26, \frac{261}{25})$ P(T+W > 30) = 0.1078 $\Rightarrow 0.108$

Solutions serve as a suggestion only. All solutions are provided by the teachers from AO Studies. MOE / UCLES bears no responsibility for these suggested answers.

Suggested Answers

For 6 part 1		where transformation
NORMAL FLOAT AUTO REAL RADIAN MP	NORMAL FLOAT AUTO REAL RADIAN MP	🔲 NORMAL FLOAT AUTO REAL RADIAN MP 📋
DISTR DRHM 1: ShadeNorm(2:Shade_t(3:Shade% ² (4:ShadeF(ShadeNorm lower:0 upper:10 μ:5 σ:1.2 Color: <u>BLUE</u> Draw	X=5 Y=0


6(iv) $T + D \sim N(24, \frac{936}{25})$ [5] p(T+D > 30) = 0.16339Prob late for work: 0.7. (0.1078) + 0.3 (0.16339) = 0.124477 Reg Prob : P(late | fine) = P(late & five) p(late) 0.07546 = 0.6062 ≈ 0.606

> Solutions serve as a suggestion only. All solutions are provided by the teachers from AO Studies. MOE / UCLES bears no responsibility for these suggested answers.

(i)
$$Y = -0.848$$

(ii) $A = 145.12$
(iii) $A = 145.12$
(i) $A = 145.12$
(i) $B = 9456.4$
 ≈ 9460
 $Y = 0.941$
(ii) do not fit. extrapolation.
(iii) $A = -145.12 + 9456.4(\frac{1}{2})$ $C = \frac{7}{4}F - \frac{160}{9}$
Sub in $(C + \frac{160}{5})^{2} = F$
 $d = -145.12 + 9456.4(\frac{2}{5}T + \frac{160}{5})$
 $= -145.12 + 17021.52T + 302604.8$
 $= 17021.52T + 302459.68$

Solutions serve as a suggestion only. All solutions are provided by the teachers from AO Studies. MOE / UCLES bears no responsibility for these suggested answers.

Suggested Answers

For 7 part 2 Normal float auto real radian mp LinRe9 y=ax+b a=9456.40257 b=-145.12547 r²=0.8859162878 r=0.9412312616 8 (i) 11 cirdes 17 vec [2] P(R=1) = P(11 civelest 1 vec) $= \frac{1 \times 17}{28_{C12}} = \frac{17}{30421757}$ P(R=2) = P(10 civdes + 2 vec) $= \frac{11_{c_{10}} \times 17_{c_{2}}}{28_{c_{10}}} = \frac{1496}{30421755} 7 \frac{17}{30421755} = P(R=1)$ Shown 8 (ii) $P(R=4) = \frac{11}{c_8} \times \frac{11}{c_4}$ [5] $28 + r_{c_1}$ 12 $P(P=3) = \frac{11c_q \times 17t_{c_3}}{18t_{c_1}}$ P(R=4) = 15(P(R=3)) $\binom{11}{c_8}\binom{17+r}{c_4} = 15\binom{11}{c_9}\binom{17+r}{c_3}$ $\binom{1}{5}\binom{(17+1)(16+1)(...(1))}{(13+1)(...(1))(3!)} = \frac{(17+1)(...(1))}{(14+1)(...(1)(3!))}$ $\frac{1}{5}$ (14+v) = 4 14+v = 20 r = 6 #

> Solutions serve as a suggestion only. All solutions are provided by the teachers from AO Studies. MOE / UCLES bears no responsibility for these suggested answers.

Suggested Answers

9 (i) The probability of each per being edected is equal and
(i) Let X be # of famility pens in a box of 10 pens.
(i) Let X be # of famility pens in a box of 10 pens.

$$X \sim B(0.06, 10)$$

 $P(X \leq 2) = 0.981$
(ii) Prob raj: 1-0.98116
LHJ = 0.018837
Let Y be # of boxes regerted out of 75
 $Y \sim B(75, 0.018837)$
 $P(Y > 3.75) = I-P(Y \leq 3)$
 $= 0.053445$
 ≈ 0.0534

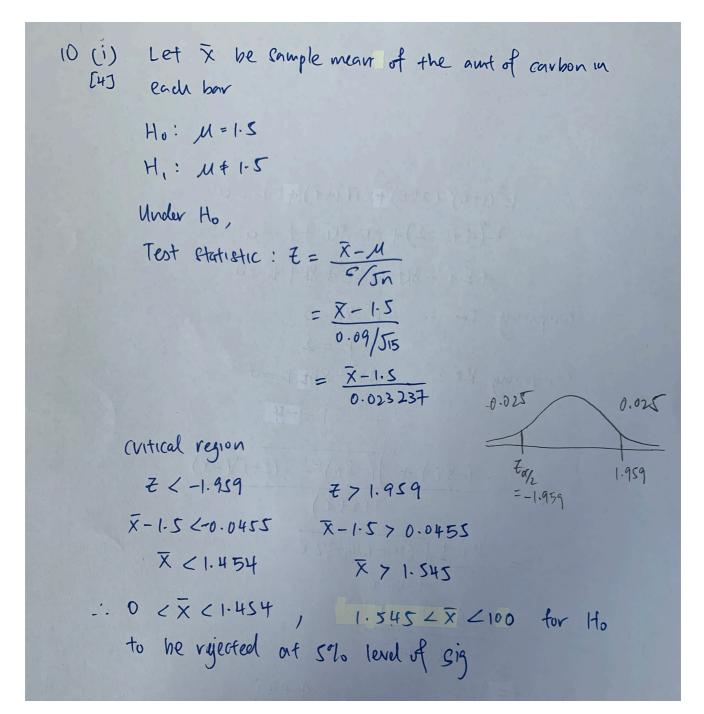
Solutions serve as a suggestion only. All solutions are provided by the teachers from AO Studies. MOE / UCLES bears no responsibility for these suggested answers.

Suggested Answers

9 (iv) Let W denotes # of faulty pens in cample of S
[5]
$$W \neq B(0.06, S)$$

 $P(W=0) = 0.7339$ $P(W=2) = 0.02990$
 $P(W=1) = 0.23.24$ $P(W=1) = 0.9681$
Reg Prob = $0.7339 + (0.2324)(0.9681) + (0.02990)(0.7339)$
 $= 0.9808 \approx 0.981$
9 (v) Prob of accepting is higher, thus less wastage.
[1]

Solutions serve as a suggestion only. All solutions are provided by the teachers from AO Studies. MOE / UCLES bears no responsibility for these suggested answers.



2020 GCE A'Level

H2 Mathematics Paper 2 (9758/02)

Suggested Answers

Solutions serve as a suggestion only. All solutions are provided by the teachers from AO Studies. MOE / UCLES bears no responsibility for these suggested answers.

Suggested Answers

(ii) Since is new line of flat bars, they may
IZ] not follow normal distribution.

$$n=40$$
, n is large, by (LT, the sample mean
weight of flot bars follow normal dist.
(iii) $\bar{X} = 0.254$
IZ] $S^2 = \frac{1}{35} \left(2.586342 - \frac{(10.16)^2}{40} \right)$
 $= 0.0001462$
(iv) H_0 : $M = 0.25$
 H_1 : M 70.25
Under Ho, by CLT : nislarge $\bar{X} \sim N(0.25, \frac{C^2}{40})$ approx
Test Attistic: $\bar{z} = \frac{\bar{X} - M}{S/5n} = 3.0922$
From G.C. p -value = 0.0182 < 0.025
Hence, reject Ho at 3.5% level of ag and conclude
that there is sufficient evidence that the mean
about of carbon is more than 0.25%.

Solutions serve as a suggestion only. All solutions are provided by the teachers from AO Studies. MOE / UCLES bears no responsibility for these suggested answers.