Additional Mathematics Paper 1 (4047/01)

where transformAtion begins

Suggested Answers

Q1
Shun of voots: = = d+B
product ofrosts: 4 = & B
New voots
Sum: $\frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{\alpha^2 + \beta^2}{\alpha \beta} = \frac{(\alpha + \beta)^2 - \lambda \alpha \beta}{\alpha \beta}$
$=\frac{25}{4}-2(4)$
187 inclained the painting of the most by 7% each year Citizen that recipion at time bediture until 2014 was a 440 to 200, time be of security to the regulators of 500.
$=-\frac{1}{16}$
product: $1 = \frac{16}{16}$
: Quad Eq. 1 with mote \$ \$ \$ 10 16x2+7x+16=0

Additional Mathematics Paper 1 (4047/01)

Suggested Answers

$$= \frac{9}{50^{2}} \times 3^{\frac{3}{2}} \times \frac{3}{5}$$

$$= 3^{2} \cdot 5^{\frac{4}{2}} \cdot 2^{\frac{1}{2}} \cdot 3^{\frac{3}{2}} \cdot 2 \cdot 5^{-1}$$

$$= 3^{\frac{3}{2}} \cdot 2^{-1} \cdot 5^{-5}$$

$$\therefore \quad 0 = -1 \quad , \quad b = \frac{7}{2} \quad , \quad c = -5$$

Additional Mathematics Paper 1 (4047/01)

Suggested Answers

$$\frac{4x^{2}-7x+9}{3x^{2}-x-3} = 2 + \frac{15-5x}{3x^{2}-x-3}$$

$$\frac{15-5x}{3x^{2}-x-3} = \frac{15-5x}{3x^{2}-x-3}$$

$$\frac{15-5x}{3x^{2}-x-3} = \frac{15-5x}{(3x-3)(x+1)} = \frac{A}{3x-3} + \frac{B}{x+1}$$

$$Snb x = \frac{3}{2} \quad A = \frac{15-5(\frac{2}{2})}{\frac{3}{2}+1} = 3$$

$$Sub x = -1 \quad B = \frac{15-5(-1)}{3(-1)-3} = -4$$

$$\frac{4x^{2}-7x+9}{3x^{2}-x-3} = 3 + \frac{3}{3x-3} - \frac{4}{x+1}$$

Additional Mathematics Paper 1 (4047/01)

Suggested Answers

Q4

$$\frac{dy}{dx} = \frac{(2)(x^{2}t^{4}) - (2x)(dx - 3)}{(2x - 3)^{2}}$$

for y to be increasing, $\frac{dy}{dx} > 0$

$$\frac{dy}{dx} = \frac{(2)(x^{2}t^{4}) - (2x)(dx - 3)}{(2x - 3)^{2}}$$

then $2(x^{2} + 4) - (2x)(2x - 3) > 0$

$$x^{2}t^{4} - 2x^{2} + 3x > 0$$

$$-x^{2} + 3x + 4 > 0$$

$$x^{2} - 3x - 4 < 0$$

$$(x - 4)(x + 1) < 0$$

$$\frac{dy}{dx} > 0$$

$$x^{2} + 3x + 4 > 0$$

$$x^{2} - 3x - 4 < 0$$

$$(x - 4)(x + 1) < 0$$

$$\frac{dy}{dx} > 0$$

$$x^{2} + 3x + 4 > 0$$

$$x^{2} - 3x - 4 < 0$$

$$(x - 4)(x + 1) < 0$$

$$\frac{dy}{dx} > 0$$

Additional Mathematics Paper 1 (4047/01)

Suggested Answers

Additional Mathematics Paper 1 (4047/01)

Suggested Answers

Q6

$$y = x^{2} + 4x^{-2}$$
 $\frac{dy}{dx} = \frac{dx}{dx} - 8x^{-3}$
 $\frac{dy}{dx} = 0$
 $\frac{dx}{dx} = 0$
 $\frac{dx}{dx}$

Additional Mathematics Paper 1 (4047/01)

where transformAtion begins

Suggested Answers

Q7
$$3\omega_{S}A = \frac{1}{\cos A} - \frac{5smA}{\cos A}$$

$$3\cos^{2}A = 1 - 5smA$$

$$3(1 - 2m^{2}A) = 1 - 5smA$$

$$-3sm^{2}A + 5smA + 2 = 0$$

$$GnA = 2 \quad \text{or} \quad smA = -\frac{1}{3}$$

$$vej \qquad \qquad \omega = 19.5^{\circ}$$

$$\therefore A = 199.5^{\circ}, 340.5^{\circ}$$

Additional Mathematics Paper 1 (4047/01)

where transformAtion begins

Suggested Answers

Q8

let
$$f(x) = x^3 + ax$$

By remainder theorem
$$f(2) = 1^3 + 1a$$

$$= 8 + 2a$$

$$f(-1) = -1 - a$$

$$\Rightarrow 8 + 2a = -1 - a$$

$$3a = -9$$

$$a = -3$$

Additional Mathematics Paper 1 (4047/01)

Suggested Answers

let
$$f(x) = x^3 - 3x^2 - 4x + 3$$

 $f(3) = 3^3 - 2(3^2) - 4(3) + 3$
 $= 0$
.: By factor theorem, $(x-3)$ is a factor
$$x^3 - 3x^2 - 4x + 3 = (x-3)(x^2 + ax - 1)$$
rompare cuefficient of x^2 : $-2 = a - 3$
 $a = 1$

let $x^2 + x - 1 = 0$
 x : $-\frac{1+\sqrt{1-4(1)}}{2} = \frac{-1+\sqrt{5}}{2}$

Additional Mathematics Paper 1 (4047/01)

where transformAtion begins

Suggested Answers

Q9

$$x^{2}+4x+y^{2}-6y=12$$

 $(x+2)^{2}-4+(y-3)^{2}-9=12$
 $(x+2)^{2}+(y-3)^{2}=5^{2}$
: centre $(-2,3)$ radius: 5

Gradient of normal:
$$\frac{7-3}{1-(2)} = \frac{4}{3}$$

:: Gradient of tempent = $-\frac{3}{4}$

Equal : $y-7 = -\frac{3}{4}(x-1)$
 $y = -\frac{3}{4}x + \frac{3}{4} + \frac{3}{4}$
 $= -\frac{3}{4}x + \frac{3}{4} + \frac{3}{4}$

Additional Mathematics Paper 1 (4047/01)

Suggested Answers

Additional Mathematics Paper 1 (4047/01)

Suggested Answers

$$\begin{vmatrix} \int_{0}^{\frac{\pi}{12}} \cos 2x \, dx \end{vmatrix} = \begin{vmatrix} \int_{0}^{\frac{\pi}{12}} \frac{\sin 2x}{2} & \int_{0}^{\frac{\pi}{12}} |2x| \\ = \begin{vmatrix} \int_{0}^{\frac{\pi}{12}} \frac{\sin 2x}{2} & -\frac{1}{2} \sin \frac{5\pi}{12} \end{vmatrix} \\ = \begin{vmatrix} \int_{0}^{\frac{\pi}{12}} -\frac{1}{4} & \int_{0}^{\frac{\pi}{12}} |2x| \\ = \frac{1}{2} - \frac{1}{2} & \cos 2x \, dx \end{vmatrix} = \frac{1}{2} - \frac{1}{2} \sin \frac{\pi}{12}$$

Reg. Aren = $\frac{1}{2} - \frac{1}{2} \cos \frac{\pi}{12} \cos \frac{\pi}{12} \cos \frac{\pi}{12}$
 $= \frac{1}{2} - \frac{1}{3} \cos \frac{\pi}{12} \cos \frac{\pi}{12}$
 $= \frac{1}{2} - \frac{1}{3} \cos \frac{\pi}{12} \cos \frac{\pi}{12}$

Additional Mathematics Paper 1 (4047/01)

Suggested Answers

$$t=0 \quad V_{k} = 15(0+e^{\circ}) = 15 \text{ m/s}$$

$$\therefore V_{g} = 30 \text{ m/s}$$

$$\therefore V_{g} = 30 \text{ m/s}$$
(ii) Find the distance between A and B.
$$\therefore e^{kt} > 0 \text{ for All veal values of } k \text{ for and } t \neq 0$$

$$t=0 \quad V \neq 0 \text{ for the jowney from } k \neq 0$$

$$t=10, V \neq 0 \quad V \neq 0$$

$$J = \frac{1}{2} + e^{10} \text{ k}$$

$$J = \frac{1}{2} + e^{10} \text{ k}$$

$$Z = e^{10} \text{ k}$$

$$k = \frac{1}{10} \text{ ln} \frac{3}{2}$$

$$= \left(\frac{30}{8} + 554.91 + \right) - \left(369.945\right)$$

$$= 222.47$$

$$222 \text{ m} \quad (384)$$

Additional Mathematics Paper 1 (4047/01)

Suggested Answers

$$a = \frac{dV}{dt} = \frac{2}{4} + 15(\frac{1}{10} \ln \frac{3}{2} e^{\frac{1}{10} \ln \frac{3}{2}} e^{\frac{1}{10} \ln \frac{3}$$

Additional Mathematics Paper 1 (4047/01)

Suggested Answers

Since
$$Sin(A-B)$$
 is negative, then $A-B \ge 0$
Hence $A \le B$
(iii) Find the value of $cos(A-B)$. [2]
 $cos(A-B) = \frac{4}{5}$ (4th Quad)

Additional Mathematics Paper 1 (4047/01)

Suggested Answers

$$(v) \text{ Using the identity from part (i), show that } \tan A = \frac{1}{3}.$$

$$(v) \text{ Using the identity from part (i), show that } \tan A = \frac{1}{3}.$$

$$(v) \text{ The identity from part (i), show that } \tan A = \frac{1}{3}.$$

$$(v) \text{ The identity from part (i), show that } \tan A = \frac{1}{3}.$$

$$(v) \text{ The identity from part (i), show that } \tan A = \frac{1}{3}.$$

$$(v) \text{ The identity from part (i), show that } \tan A = \frac{1}{3}.$$

$$(v) \text{ The identity from part (i), show that } \tan A = \frac{1}{3}.$$

$$(v) \text{ The identity from part (i), show that } \tan A = \frac{1}{3}.$$

$$(v) \text{ The identity from part (i), show that } \tan A = \frac{1}{3}.$$

$$(v) \text{ The identity from part (i), show that } \tan A = \frac{1}{3}.$$

$$(v) \text{ The identity from part (i), show that } \tan A = \frac{1}{3}.$$

$$(v) \text{ The identity from part (i), show that } \tan A = \frac{1}{3}.$$

$$(v) \text{ The identity from part (i), show that } \tan A = \frac{1}{3}.$$

$$(v) \text{ The identity from part (i), show that } \tan A = \frac{1}{3}.$$

$$(v) \text{ The identity from part (i), show that } \tan A = \frac{1}{3}.$$

$$(v) \text{ The identity from part (i), show that } \tan A = \frac{1}{3}.$$

$$(v) \text{ The identity from part (i), show that } \tan A = \frac{1}{3}.$$

$$(v) \text{ The identity from part (i), show that } \tan A = \frac{1}{3}.$$

$$(v) \text{ The identity from part (i), show that } \tan A = \frac{1}{3}.$$

$$(v) \text{ The identity from part (i), show that } \tan A = \frac{1}{3}.$$

$$(v) \text{ The identity from part (i), show that } \tan A = \frac{1}{3}.$$

$$(v) \text{ The identity from part (i), show that } \tan A = \frac{1}{3}.$$

$$(v) \text{ The identity from part (i), show that } \tan A = \frac{1}{3}.$$

$$(v) \text{ The identity from part (i), show that } \tan A = \frac{1}{3}.$$

$$(v) \text{ The identity from part (i), show that } \tan A = \frac{1}{3}.$$

$$(v) \text{ The identity from part (i), show that } \tan A = \frac{1}{3}.$$

$$(v) \text{ The identity from part (i), show that } \tan A = \frac{1}{3}.$$

$$(v) \text{ The identity from part (i), show that } \tan A = \frac{1}{3}.$$

$$(v) \text{ The identity from part (i), show that } \tan A = \frac{1}{3}.$$

$$(v) \text{ The identity from part (i), show that } \tan A = \frac{1}{3}.$$

$$(v) \text{ The identity from part (i), show that } \tan A = \frac{1}{3}.$$

$$(v) \text{ The identity from part (i), show that } \tan$$

$$tan (4+B) = \frac{tan A + tan B}{1 - tan A + tan B} = \frac{24}{7}$$

$$\Rightarrow \frac{\frac{1}{3} + tan B}{1 - \frac{1}{3} tan B} = \frac{24}{7}$$

$$\frac{7}{3} + 7 tan B = 24 - 2 tan B$$

$$15 tan B = \frac{65}{3}$$

$$tan B = \frac{13}{9}$$

