2017 GCE O'Level

Additional Mathematics Paper 1 (4047/01)

Suggested Answers

1. $\frac{d^{2} y}{d x^{2}}=8-6 x$
$\frac{d y}{d x}=8 x-3 x^{2}+c$
$\left.\frac{d y}{d x}\right|_{x=2}=3$
$\therefore 8(2)-3(2)^{2}+c=3$
$16-12+c=3$
$c=-1$
$\Rightarrow \frac{d y}{d x}=8 x-3 x^{2}-1$
$y=4 x^{2}-x^{3}-x+d$
Sub in $(2,8)$
$8=4(2)^{2}-(2)^{3}-(2)+d$
$8=16-8-2+d$
$d=2$
\therefore Equation of curve $y=-x^{3}+4 x^{2}-x+2$
Solutions serve as a suggestion only. All solutions are provided by the teachers from AO Studies. MOE / UCLES bears no responsibility for these suggested answers.
2. (i)

(ii) $4 y=7 x+4$
$y=4 x^{\frac{1}{2}}$
Sub (2) in (1)
$4\left(4 x^{\frac{1}{2}}\right)=7 x+4$
$16 x^{\frac{1}{2}}=7 x+4$

2017 GCE O'Level

Additional Mathematics Paper 1 (4047/01)

Suggested Answers

$$
\begin{aligned}
& 7 x-16 x^{\frac{1}{2}}+4=0 \\
& \text { Let } x^{\frac{1}{2}}=w \\
& 7 w^{2}-16 w+4=0 \\
& (w-2)(7 w-2)=0 \\
& w=2 \quad \text { or } \quad w=\frac{2}{7} \\
& \therefore x^{\frac{1}{2}}=2 \quad x^{\frac{1}{2}}=\frac{2}{7} \\
& x=4 \quad x=\frac{4}{49} \\
& y=8 \quad y=\frac{8}{7}
\end{aligned}
$$

\therefore Coordinates are $(4,8)$ and $\left(\frac{4}{49}, \frac{8}{7}\right)$.
Solutions serve as a suggestion only. All solutions are provided by the teachers from AO Studies. MOE / UCLES bears no responsibility for these suggested answers.
3. $\frac{1}{y}=\frac{1}{\sqrt{x}} m+c$
$\frac{1}{0.25}=\frac{1}{\sqrt{0.04}} m+c$
$4-5 m=c$
$\frac{1}{0.5}=\frac{1}{\sqrt{1.00}} m+c$
$2-m=c$
(1) $=(2)$
$4-5 m=2-m$
$m=\frac{1}{2}$
$c=\frac{3}{2}$
$\Rightarrow \frac{1}{y}=\frac{1}{\sqrt{x}}\left(\frac{1}{2}\right)+\frac{3}{2}$
$\frac{1}{y}=\frac{5}{3}$
$\therefore y=\frac{3}{5}$

2017 GCE O'Level
 Additional Mathematics Paper 1 (4047/01)

Suggested Answers

4. $7 x^{2}-3 x+1=0$

Sum of roots: $\frac{1}{\alpha}+\frac{1}{\beta}=\frac{3}{7}$

$$
\begin{equation*}
\frac{\alpha+\beta}{\alpha \beta}=\frac{3}{7} \tag{1}
\end{equation*}
$$

Product of roots: $\frac{1}{\alpha \beta}=\frac{1}{7}$
$\alpha \beta=7$
From (1): $\alpha+\beta=3$
Sum of new roots: $\alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-2 \alpha \beta=-5$
Product of new roots: $\alpha^{2} \beta^{2}=(\alpha \beta)^{2}=7^{2}=49$
\therefore Equation: $x^{2}+5 x+49=0$

Solutions serve as a suggestion only. All solutions are provided by the teachers from AO Studies. MOE / UCLES bears no responsibility for these suggested answers.

Hear what our students have to say...

Jann Lee Xin, Chung Cheng High School (Yishun)

Before I joined AO studies, I tried taking classes from other tuition centres but I remained an F9 student for maths. Disheartened, I was so sure I was a gonecase for both my maths since I didn't improve at all even when I had gone for tuition classes and I started losing confidence in myself. My results were fail grades continuously till mid year examinations in secondary four and I even considered dropping amaths, but then Chu Wei stopped me and told me he believed I could pass my maths. I still remembered I thought of how incredulous that was and I even scoffed when he said that. However, after months of his patient teaching, I was overjoyed when I started to pass my a maths, then improved to get a B4 in prelims. I finally got a B3 for amaths and A2 for emaths in o levels and I am proud to say that without Chu Wei, I would never had been able to achieve such good grades in such a short time. I am forever grateful to him, thank you Chu Wei!

during A Levels. Chuwei is a tutor that really cares about the welfare of his students and never failed to be there when I needed help in my studies and even for any other issues. He gave me the motivation to study during my A Levels and allowed me to score a decent 82 Rank Points for my A Levels which allowed me to get accepted into the course I wanted in NUS. Honestly, without him, I would be nowhere near to where I am today. Thank you Chuwei for being a dedicated and awesome math tutor and the other teachers in AO studies that willingly assisted me in my other subjects when I approached them. God bless this tuition centre :)

2017 GCE O'Level

Additional Mathematics Paper 1 (4047/01)

Suggested Answers

5. (i) LHS: $\frac{\sec x+\operatorname{cosec} x}{\sec x-\operatorname{cosec} x}$
$=\frac{\frac{1}{\cos x}+\frac{1}{\sin x}}{\frac{1}{\cos x}-\frac{1}{\sin x}}$
$=\frac{\sin x+\cos x}{\sin x \cos x} \div \frac{\sin x-\cos x}{\sin x \cos x}$
$=\frac{\sin x+\cos x}{\sin x-\cos x}$
$=\frac{\cos x\left(\frac{\sin x}{\cos x}+1\right)}{\cos x\left(\frac{\sin x}{\cos x}-1\right)}=\frac{\tan x+1}{\tan x-1}=$ RHS (shown)
(ii) $\frac{\tan x+1}{\tan x-1}=\frac{5}{2}$
$2 \tan x+2=5 \tan x-5$
$\tan x=\frac{7}{3}$
$\alpha=1.1659$
$x=1.17 \mathrm{rad}, 4.31 \mathrm{rad}$
Solutions serve as a suggestion only. All solutions are provided by the teachers from AO Studies. MOE / UCLES bears no responsibility for these suggested answers.
6. (i) Total length: $4 y+6 x x=288$

$$
\begin{aligned}
& 4 y=288-6 x \\
& y=72-\frac{3}{2} x
\end{aligned}
$$

Total area: $A=3 x y$

$$
=3 x\left(72-\frac{3}{2} x\right)=216 x-\frac{9}{2} x^{2} \quad(\text { shown })
$$

(ii) $\frac{d A}{d x}=216-9 x=0$
$x=24$
$y=36$
\therefore Dimensions of each tennis court is 36 m by 24 m .

2017 GCE O'Level

Additional Mathematics Paper 1 (4047/01)

Suggested Answers

7. (i) Area of $\triangle A B C: \frac{1}{2}(A B)(A C) \sin 60^{\circ}=\frac{1}{4}(9+\sqrt{3})$

$$
\begin{aligned}
& \frac{1}{2}(\sqrt{3}+1)(A C)\left(\frac{\sqrt{3}}{2}\right)=\frac{1}{4}(9+\sqrt{3}) \\
& A C=\frac{9+\sqrt{3}}{3+\sqrt{3}} \times \frac{3-\sqrt{3}}{3-\sqrt{3}}=\frac{24-6 \sqrt{3}}{6}=4-\sqrt{3} \\
& \therefore a=4, \quad b=-1
\end{aligned}
$$

(ii) $\quad B C^{2}=A B^{2}+A C^{2}-2(A B)(A C) \cos 60^{\circ}$

$$
\begin{aligned}
& =(1+\sqrt{3})^{2}+(4-\sqrt{3})^{2}-(1+\sqrt{3})(4-\sqrt{3}) \\
& =1+2 \sqrt{3}+3+16-8 \sqrt{3}+3-4-3 \sqrt{3}+3 \\
& =22-9 \sqrt{3} \mathrm{~cm}^{2}
\end{aligned}
$$

Solutions serve as a suggestion only. All solutions are provided by the teachers from AO Studies. MOE / UCLES bears no responsibility for these suggested answers.
8. (i) By long division,
$3 x^{3}-x^{2}+27 x-9=\left(x^{2}+9\right)(3 x-1)$
(ii) $\frac{6+11 x-5 x^{2}}{\left(x^{2}+9\right)(3 x-1)} \equiv \frac{A x+B}{x^{2}+9}+\frac{C}{3 x-1}$
$\Rightarrow 6+11 x-5 x^{2}=(A x+B)(3 x-1)+C\left(x^{2}+9\right)$
Sub $x=\frac{1}{3}$
$6+11\left(\frac{1}{3}\right)-5\left(\frac{1}{3}\right)^{2}=C\left(\left(\frac{1}{3}\right)^{2}+9\right)$
$C=1$
Compare coefficient of $x^{2}: \quad-5=3 A+C$

$$
A=-2
$$

Compare coefficient of $x^{0}: 6=-B+9 C$

$$
\begin{array}{r}
B=3 \\
\therefore \frac{6+11 x-5 x^{2}}{\left(x^{2}+9\right)(3 x-1)}=\frac{3-2 x}{x^{2}+9}+\frac{1}{3 x-1}
\end{array}
$$

[^0]
2017 GCE O'Level Additional Mathematics Paper 1 (4047/01)

Suggested Answers
 Hear what our students have to say...

Yeo Dong Han, Saint Andrews Junior College

During my time in J1, I had difficulties understanding Math problems and as a result, my grades fell much below what I expected. I could still remember failing math examinations then. It was during the mid of J1 when my friend introduced me to this tuition class. During a short period of 2-3 months, my results took a great turn. Eventually, I managed to achieve an A in my promos and my A Levels Math Exam. I credit this achievement mostly to my math tutor, Chu Wei. He is dedicated in guiding us and never stopped encouraging and motivating us by telling us that we are capable of scoring A. He takes great effort in making his math questions fun to do despite being challenging. This enabled me not only to take an interest in math, but also to be able to cope with difficult questions with ease. All in all, I am glad to have him as my tutor and as a friend. Thank You Chu Wei!

Quinn Chen Lu Shi, Victoria Junior College

Whether you're the kind of 'a relatively doing well' but can never score an 'A' student or a 'weak in math' student like I was, please take some time to read the long but honest review: Chuwei is a tutor with both great knowledge and a big heart. As a teacher, he never fails to clear our doubts and explain basic mathematical
 concepts which are crucial in cultivating problem solving skills. He goes the extra mile to answer our questions out of class and even late nights. As an Arts student who has always struggled with math, Chuwei has consistently guided me since J1 and allow me to gain confidence.
His depth of knowledge of the subject and the syllabus has enabled him to quickly identify his students' weaknesses and advise each of us individually on how we can improve. From failing math in the past, I've finally did well in A levels.
Honestly, it was never a smooth journey for me when it came to this daunting subject, and there were times where I faced setbacks in examinations. However, Chuwei, someone who believes in the best in every student, gave me the encouragement I needed each time and allowed me to push through until the end. He has been more than just a tutor to all of us.
To parents or students reading, if you want a tutor who is dedicated, whose teaching is effective or a tutor who can give your child/you maximum exposure (something all students really need in A level H 2 mathematics unlike O levels), I believe Chuwei is the tutor you are looking for.
To students, no matter what tutor you're going to eventually, please remember that math really requires you to PRACTISE and don't be complacent. There are many 'A' students who eventually scored a 'B' just because they got lazy or are over confident. There are also those who used to fail but got an 'A' because they tried hard enough.

[^1]
Suggested Answers

When $t=0, s=0 \Rightarrow d=0$
$\therefore t=4, s=5(4)^{2}=80 \mathrm{~m}$
(iii) $\frac{d V}{d T}=10-k T$
$V=10 T-\frac{k}{2} T^{2}+c$
When $T=0, V=40$
$40=10(0)-\frac{k}{2}(0)^{2}+c$
$c=40$
When $T=3, V=0$
$0=10(3)-\frac{k}{2}(3)^{2}+40$
$k=\frac{140}{9} \quad$ (shown)
10. (i) $\angle P B A=\angle A C B \quad$ (Alternate segment theorem)

$$
=\angle D A C \quad(A D \text { parallel to } B C) \quad \text { (shown })
$$

(ii) $\angle C B T=\angle B A C \quad$ (Alternate segment theorem)

$$
\begin{aligned}
& =\angle D A B-\angle D A C \\
& =\left(180^{\circ}-\angle D C B\right)-\angle D A C \quad(\text { Opp angles in cyclic quad }) \\
& =180^{\circ}-\angle D C B-\angle P B A \quad(\because \angle D A C=\angle P B A) \\
& =180^{\circ}-(\angle D C A+\angle A C B)-\angle P B A \\
& =180^{\circ}-\left(90^{\circ}+\angle A C B\right)-\angle P B A \quad(\text { Angles in semicircle }) \\
& =180^{\circ}-\left(90^{\circ}+\angle P B A\right)-\angle P B A \quad \text { (Alternate segment theorem) } \\
& =90^{\circ}-2(\angle P B A) \quad \text { (shown) }
\end{aligned}
$$

Suggested Answers

11. (i) $y=\frac{2 x+1}{x-1}$

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{2(x-1)-(1)(2 x+1)}{(x-1)^{2}} \\
& =-\frac{3}{(x-1)^{2}}<0 \quad \text { for all } x \in \mathbb{R}
\end{aligned}
$$

Since $\frac{d y}{d x} \neq 0$ for all values of x, therefore the curve has no turning points.
(ii) $\frac{2 x+1}{x-1}=2+\frac{3}{x-1}$

$$
\begin{aligned}
\int_{2}^{4} 2+\frac{3}{x-1} d x & =[2 x+3 \ln |x-1|]_{2}^{4} \\
& =(8+3 \ln 3)-(4-3 \ln 1) \\
& =4+3 \ln 3
\end{aligned}
$$

Area of trapezium $=\frac{1}{2}(5+3)(2)=8$
Area of shaded region $=8-(4+3 \ln 3)$

$$
=0.704 \text { units }^{2}
$$

12. (i) $x^{2}+y^{2}+8 x-24 y+96=0$
$(x+4)^{2}-16+(y-12)^{2}-144+96=0$
$(x+4)^{2}+(y-12)^{2}=8^{2}$
Centre $(-4,12) \quad$ Radius $=8$
$3 y+4 x=k$
$y=-\frac{4}{3} x+\frac{k}{3}$
Let general point on normal be $\left(x,-\frac{4}{3} x+\frac{k}{3}\right)$
Gradient: $\frac{12-\left(-\frac{4}{3} x+\frac{k}{3}\right)}{-4-x}=-\frac{4}{3}$

2017 GCE O'Level

Additional Mathematics Paper 1 (4047/01)

Suggested Answers

$\therefore k=20$
(ii) Sub $y=-\frac{4}{3} x+\frac{20}{3}$ in equation of circle

$$
\begin{aligned}
& (x+4)^{2}+\left(-\frac{4}{3} x+\frac{20}{3}-12\right)^{2}=8^{2} \\
& 25 x^{2}+200 x-176=0 \\
& x=\frac{-200 \pm \sqrt{200^{2}-4(25)(-176)}}{2(25)} \\
& x=\frac{4}{5},-\frac{44}{5}
\end{aligned}
$$

$\because R$ is between S and centre of radius
$\therefore x=\frac{4}{5}, y=-\frac{4}{3}\left(\frac{4}{5}\right)+\frac{20}{3}=\frac{28}{5}$
$S(5,0)$
Distance $R S=\sqrt{\left(5-\frac{4}{5}\right)^{2}+\left(\frac{28}{5}\right)^{2}}=\sqrt{49}=7$ units

[^0]: Solutions serve as a suggestion only. All solutions are provided by the teachers from AO Studies. MOE / UCLES bears no responsibility for these suggested answers.

[^1]: 9. (i) $\frac{d v}{d t}=10$

 $$
 v=10 t+c
 $$

 $$
 t=0, v=0 \Rightarrow c=0
 $$

 $$
 \therefore t=4, v=10(4)=40 \mathrm{~m} / \mathrm{s}
 $$

 (ii) $v=10 t$
 $s=5 t^{2}+d$

